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Abstract

This paper presents a forecasting exercise that assesses the predictive potential of a daily price

index based on online prices. Prices are compiled using web scraping services provided by the private

company PriceStats in cooperation with a finance research corporation, State Street Global Markets.

This online price index is tested as a predictor of the monthly core inflation rate in Argentina,

known as “resto IPCBA” and published by the Statistics Office of the City of Buenos Aires. Mixed

frequency regression models offer a convenient arrangement to accommodate variables sampled at

different frequencies and hence many specifications are evaluated. Different classes of these models

are found to produce a slight boost in out-of-sample predictive performance at immediate horizons

when compared to benchmark naïve models and estimators. Additionally, an analysis of intra-period

forecasts, reveals a slight trend towards increased forecast accuracy as the daily variable approaches

one full month for certain horizons.
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1 Introduction

Forecasting inflation has become increasingly important in Argentina as it is essential for economic

agents to adjust wages and prices, particularly in recent years, in a context of high and volatile infla-

tion. Having timely updates about the future trajectory of the inflation rate is essential for conducting

monetary policy, specially, since the Central Bank is transitioning towards an inflation targeting regime.

Recent developments in the use of “big data” have greatly facilitated tracking macroeconomic variables

in real-time. A remarkable example is the construction of online price indexes that are sampled daily,

rather than monthly, as is standard for traditional price indexes from statistical offices. A natural ques-

tion arises of whether this information can help predict the lower frequency inflation (in terms of which

inflation targets are usually defined). Ghysels et al. (2004) introduced a regression framework that al-

lows for the exploitation of times series sampled at different frequencies, known in the literature as

Mixed Data Sampling (MIDAS) regression models. The methodology reduces to fitting a regression

model to some low frequency variable using high frequency data as regressors. As it will be shown

later, this technique closely resembles distributed lag models. This paper employs this methodology

to assess whether the combination of price series sampled at different frequencies is an effective tool

for improving forecast accuracy compared to naïve models, using the online price index constructed by

PriceStats in cooperation with State Street Global Markets.

The rest of the paper is organized as follows. In the next section, a brief introduction to MIDAS models

is presented. In the third section, existing theoretical research on MIDAS regressions as well as some

applications in forecasting inflation are briefly reviewed. In the fourth section, the forecasting exercise

is described, and the results are discussed. And finally, the fifth section concludes.

2 MIDAS Regression Models

MIDAS regression models propose a data driven method to aggregate high frequency variables into

lower frequency predictors. They provide an alternative to the well-known “bridge” approach (Schu-

macher, 2016) in which the high frequency variables are aggregated with equal weights (flat aggrega-

tion).1 Ghysels et al. (2004) suggested combining yt , a low frequency process, and xτ a high frequency

process that is observed a discrete and fixed number of times m each time a new value of yt is observed,

in a plain regression equation,

yt =
m−1
∑

j=0

θ j x t− j/m + ut , (2.1)

1In fact, this can be considered as a special case of a MIDAS regression.
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or more compactly,

yt = (θ
′x′t)

′ + ut , (2.2)

where xt ≡ [x t . . . x t−(m−1)/m] is a 1×m row vector that collects all the xτ corresponding to period t and

θ ≡ [θ0 . . . θm−1]′ is the m×1 vector of weight coefficients.2 Each j high frequency observation x t− j/m

within the low frequency period t enters the model linearly as a variable accompanied by its specific

weight, θ j, totaling m explanatory variables and m weights, plus an error term. The high frequency

subindex τ needs to be represented in terms of the low frequency index t by noting that τ= t−1+ j/m

for j = 1, . . . , m since m is fixed, where x t−0/m would be the most recent observation. This structure

actually conceals a high frequency lag polynomial θ (L1/m) ≡
∑m−1

j=0 θ j L
j/m x t so that L j/m x t = x t− j/m is

similar in fashion to a distributed lags model.

To provide a clearer perspective, it is perhaps easier to introduce matrix notation. Defining X ≡

[x′1 . . . x′T ]
′ as the T × m matrix that groups all the xt vectors together; y ≡ [y1 . . . yT ]′, the col-

lection of the low frequency observations of size T ×1; and u≡ [u0 . . . uT ]′, the residuals of the same

length as y, it is possible to unveil a simple multiple regression equation,
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. (2.3)

Indeed, this problem can be solved by ordinary least squares (OLS) and this method will produce con-

sistent coefficient estimates. Equation (2.1) is usually referred to as the unrestricted MIDAS regression

model (U-MIDAS).3 However, an inconvenience arises when m, the length of the vector θ, is large rel-

ative to the sample size T , as is usually the case in MIDAS regressions. When this occurs, the models

suffer from parameter proliferation and OLS induces poor estimates and consequently, poor forecasts.

A straightforward way to overcome this deficiency is to impose restrictions on the coefficients of the

high frequency lag polynomial and restate each θ j as a function of some q hyperparameters and its

subindex j (its position within the low frequency lag polynomial) in such a way that q� m. Each θ j is

redefined as θ j ≡ w j(γ; j) where the vector γ is the collection of q hyperparameters that characterize

the weight function w j(·). Equation (2.1) is transformed to,

yt = λ
m−1
∑

j=0

�

w j(γ; j)
∑m−1

j=0 w j(γ; j)

�

x t− j/m + ut . (2.4)

2This equation may also include constants, trends, seasonal terms or other low frequency explanatory variables.
3Foroni et al. (2015) present a detailed assessment of this strategy.
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where λ is an impact parameter and the weights are normalized so that they sum up to unity. Ghysels

et al. (2004) initially recommended what is known as the exponential Almon polynomial as a candidate

for weight function as it allows for many different shapes and depends only on a few parameters. This

is an exponentiated version of an Almon lag polynomial, which is well known in the distributed lags

literature,4

w j(γ1, . . . ,γq; j) = e
∑q

s=1 γs js . (2.5)

Another conventional candidate is the beta probability density,

w j(γ1,γ2; j) = zγ1−1
j (1− z j)

γ2−1, (2.6)

with z j ≡ j/(m− 1), γ1 > 0 and γ2 > 0.

Parameterization as in equation (2.5) has proved to be quite popular and has become the standard

among researchers, particularly when q = 2.

The introduction of constrained coefficients has many far-reaching implications. The model turns non-

linear and lacks a closed form solution. It is necessary to resort to nonlinear least squares and approx-

imate the solution by numerical optimization routines. Additionally, the constraints are highly likely

to introduce a bias in each θ j. However, based on Monte Carlo simulations, when the sample size is

small relative to the number of parameters, Ghysels et al. (2016) argue that both, parameter estimation

precision and out-of-sample forecast accuracy, gained by the increase in degrees of freedom, far offset

the effects of the bias generated by misspecified constraints.

MIDAS models are generally intended as a direct forecasting tool since this could prove to be more

robust against misspecification (Marcellino et al., 2006). This implies that estimation additionally de-

pends on the time displacement of the variables, d ∈ Q, and the forecast horizon,5 h ∈ N. The direct

strategy requires estimation of as many models as per pair (d, h) is required. If TY is the time index of

latest yt available for estimation, and TX is the time index of the latest xτ available for both estimation

and forecasting, then d can be defined as d ≡ TY − TX . Setting W (L1/m;γ) ≡
∑m−1

j=0 w j(γ; j)L1/m, a

forecast can be computed with,

ŷT+h = λ̂d,hW (L1/m; γ̂d,h)xT−d . (2.7)

The “nowcast” can be retrieved when d = −1 and h = 1. Note also that, the fact that d is a rational

number implies that it is possible to generate intra-period forecasts.

To arrive at equation (2.7), it is first necessary to estimate,

yt = λW (L1/m;γ)x t−h−d + ut , (2.8)

4See for example the book by Judge et al. (1985).
5How many periods into the future it is necessary to forecast.
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and then compute ŷT+h with the estimated parameters, λ̂d,h and γ̂d,h, and the vector xT−d .

It is possible to extend the MIDAS model by allowing for more than m high frequency regressors. For

example, by including pX lags of the vector xt totaling m×LX high frequency variates where LX = pX+1,

the MIDAS-DL model is formed,

yt =
pX
∑

r=0

(θ′rx
′
t−r)
′ + ut , (2.9)

or equivalently,

yt =
pX
∑

r=0

m−1
∑

j=0

θr, j x t−r− j/m + ut . (2.10)

In matrix notation, this can be represented by,
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If different weight functions for each θr in equation (2.9), then the multiplicative or aggregates-based MIDAS

model is obtained (Ghysels et al., 2016). On the contrary, employing a single weight function for all m × LX

coefficients vectors θr is also possible. The first method allows for greater flexibility but at the cost of more

parameters to estimate, so this possibility will not be considered, as this may not be convenient for a very short

sample size.

Other possible extensions include constructing high frequency factors (Marcellino and Schumacher, 2010), in-

corporating cointegration relations (Miller, 2013), integrating Markov switching (Guérin and Marcellino, 2013),

estimating multivariate models (Ghysels et al., 2007), using infinite polynomials (Ghysels et al., 2007) or adding

low frequency autoregressive augmentations (Ghysels et al., 2007; Clements and Galvão, 2008; Duarte, 2014),

for example. Foroni and Marcellino (2013) provide a comprehensive survey of possible extensions in a recent

survey about mixed frequency models.

3 Literature Review

Clements and Galvão (2008) were among the first to study applications of MIDAS regressions to macroeconomic

variables. In their paper, they forecast U.S. real quarterly output growth in combination with three different

monthly variables: i) industrial production, ii) employment growth, and iii) capacity utilization. They find a
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slight increase in out-of-sample forecast accuracy both with vintage and revised data compared to two benchmarks

models, an autoregression and an ADL model, particularly, for short-term horizons. They also derive and assess

a model with autoregressive dynamics introduced as a common factor shared by the low and the high frequency

lag polynomials. Based on comments by Ghysels et al. (2007), they argue that including an autoregressive term

in a standard MIDAS model, as in the next equation,

yt = φ yt−1 +λW (L1/m; γ̂)x t + ut , (3.1)

induces a seasonal response from yt to x t irrespective of whether x t exhibits a seasonal pattern. They suggest

further restricting the model by adding a common lag polynomial shared between yt and x t ,

(1−φL)yt = λ(1−φL)W (L1/m; γ̂)x t + ut , (3.2)

so that when writing the model in distributed lag representation, the polynomial in L cancels out, eliminating

the spurious seasonal response. A multi-step generalization of (3.2) for h step ahead forecasts would be,

(1−φLh)yt = λ(1−φLh)W (L1/m; γ̂)x t + ut . (3.3)

Armesto et al. (2010) analyze the performance of MIDAS models for the U.S. economy for four different variable

combinations: i) quarterly GDP growth and monthly employment growth; ii) monthly CPI inflation and daily fed

funds rate; iii) monthly industrial production growth and a measure of term spread; and iv) employment growth

and again a measure of term spread. They contrast the results of flat aggregation, the exponential Almon poly-

nomial and a step weight function, but are unable to find a dominant model specification. They provide detailed

results for one-step-ahead intra-period forecasting performance of the models, computed by accumulating leads6

as the high frequency variable approach a full low frequency period. They find an erratic pattern for the root

mean square forecast error (RMSFE) of the models as a function of the leads included in the regression. Thus,

in a real time setting, it would not be trivial which intra-period forecasts could be the most accurate.

Monteforte and Moretti (2013) develop MIDAS models to forecast the euro area harmonized price index inflation.

They put forward a two-step approach involving low and high frequency variables. In the first place, they estimate

a generalized dynamic factor model (Forni et al., 2000) for the inflation rate based on a set of variables and, then

they extract a common component and separate that into a long-run and a cyclical, or short-run, component. The

second step consists in fitting the model of Clements and Galvão (2008) to capture short-term dynamics and use

financial time series as high frequency regressors, in addition to the long-run component previously estimated

as well as other low frequency variables. They design three MIDAS models, M1, M2 and M3, each with different

high frequency regressors: i) M1 includes the short-term interest rate, changes in interest rate spread and oil

future prices; ii) M2 uses changes in the wheat price, oil future quotes and the exchange rate; and finally, iii) M3

consists of long-term rates, changes in the interest rate spreads, and changes in the short-term rate. They contrast

the out-of-sample performance in terms of RSMFE of these models against the equations for the inflation rate of

6They call “lead” an observation of the high frequency predictor that corresponds to the same temporal period of the low
frequency variable.
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two different low frequency vector autoregressions, a random walk, an autoregressive moving average model,

and an autoregression. They compute all the intra-period forecasts for the MIDAS models, the monthly average

of these daily forecasts and compare this average to all the low frequency models. All the analysis is conducted

for one-month-ahead and two-month-ahead forecasts. They find on average a 20% reduction in forecast error

dispersion. The authors also provide a last empirical exercise, by using forecast combinations with the MIDAS

models and the inflation rate implied by financial derivatives, but this approach does not produce any significant

gains.

Duarte (2014) discusses in detail the implications of autoregressive augmentations in MIDAS regression models

and diverse ways to incorporate them. She explores the out-of-sample performance of MIDAS models with

autoregressive augmentations with no restrictions, with an autoregressive augmentation with a common factor

restriction, and models with autoregressive augmentations with no restrictions and a multiplicative scheme to

aggregation. She then compares these models to the same models but without the autoregressive component, and

to two low frequency benchmarks models, a low frequency autoregression and multiple regression model. She

computes forecasts for quarterly euro area GDP growth based on three different series: i) industrial production,

ii) an economic sentiment indicator and iii) the Dow Jones Euro Stoxx index. She disregards the seasonal spikes

impulse responses as the relevant impulse responses, as she argues that it is not possible to single out a particularly

relevant impulse response for a mixed frequency process since they vary depending on when the shocks occur

within the low frequency process. Although there is no superior model among all tested, Duarte finds once again

that there are sizable gains compared to the benchmarks at all horizons.

Breitung and Roling (2015) propose a “nonparametric” MIDAS model to forecast monthly inflation rates using

a daily predictor. Instead of imposing any particular polynomial parameterization, the nonparametric approach

consists on enforcing some degree of smoothness to the lag distribution by minimizing a penalized least squares

cost function,

S(θ) = (y −Xθ)′(y −Xθ) +ηθ′D′Dθ, (3.4)

where D is a (m− 1)× (m+ 1) matrix such that

D =

















1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · 1 −2 1

















, (3.5)

and η is a pre-specified smoothing parameter. They refer to this estimator the Smoothed Least Squares estimator

and its structure closely resembles the well-known Hodrick-Prescott filter. If η is not known, they suggest solving

for the η that minimizes the Akaike Information Criterion. Their target variable is the harmonized index of con-

sumer prices for the euro area and they use a commodity price index as a high frequency regressor. They compare

their model against the unconditional mean and the parametric MIDAS model (exponential Almon weights) for

two different forecast horizons. They conclude that the commodity index paired with the nonparametric MIDAS
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produces in a reasonably good one-month-ahead forecasts. Additionally, the authors conduct a Monte Carlo ex-

periment and compare their model to four parametric MIDAS alternatives: i) the exponential Almon polynomial,

ii) a hump shaped function, iii) a declining linear function, and iv) a sinusoidal function. They find that the

nonparametric method performs similarly compared to the parametric competitors.

4 Data, Exercise, and Results

The out-of-sample predictive performance of an online price index will be analyzed to forecast the core inflation

rate in real-time. To be more specific, this will be assessed using many different MIDAS specifications discussed in

the previous sections and these estimations will be compared with benchmark single frequency naïve models and

estimators. MIDAS regressions result intuitive for this purpose since the monthly inflation rate can be approx-

imately decomposed as the aggregation of daily inflation rates of the corresponding month, when evaluated in

logarithmic differences, πm
t ≈
∑

τ∈t(log pd
τ − log pd

τ−1). Atkeson and Ohanian (2001), Stock and Watson (2007)

and Faust and Wright (2009) have shown that simple benchmarks are not easily beaten by more sophisticated

models (at least in the case of the US economy), and so these could serve as a good starting point to gauge the

predictive power of the daily series.

4.1 Data

The online price index is compiled by the company PriceStats in cooperation with State Street Global Markets,

a leading financial research corporation. PriceStates is a spin-off company that emerged from the Billion Prices

Project at MIT, founded by professors Alberto Cavallo and Roberto Rigobon. It is the first company, institution, or

organization to apply a big data approach to produce real-time (daily) price indexes to track general price inflation

and other related metrics. Essentially, they collect daily data of prices from online retailers by “web scraping”

(i.e. recording price information contained inside specific HyperText Markup Language tags in the retailers’

websites) and aggregate the data by replicating the methodology of a traditional consumer price index, as is

done by National Statistics Offices with offline prices. Cavallo (2013) goes through the methodology and provides

comparisons between online and offline price indexes for Argentina, Brazil, Chile, Colombia, and Venezuela. He

concludes that online price indexes can track the dynamic behavior of inflation rates over time fairly well with

the exception of Argentina. In fact, the construction of online price indexes was initially motivated by the desire

to provide the public with an alternate measure of the inflation rate in Argentina, since that from the years 2007

to 2015, there were large discrepancies between the official price indexes compiled by the National Institute of

Statistics and Census (INDEC) and price indexes compiled by provincial statistics offices or those compiled by

private consultants. Throughout the rest of the paper, this price index will be referred to as the State Street

PriceStats Index (SSPS). Data for Argentina is available since November 1, 2007 with a three-day publication

lag.

8



A provincial price index that raised itself to prominence in recent years is the consumer price index compiled by the

General Department of Statistics and Censuses of the Government of the Autonomous City of Buenos Aires, known

as IPCBA. Although this index only contemplates the territory of the City of Buenos Aires (with a population

close to 3 million), it should be reasonable to expect that price dynamics in the Buenos Aires Metropolitan Area

(which encompasses a much larger population, close to 14 million or 1/3 of the total population of Argentina)

share most of its features with the pricing structure of the City Buenos Aires, resulting from arbitrage by reason

of geographical proximity, as this should prevent large distortions, at least in nonregulated markets. A more

restricted version of the index is also published, called “resto IPCBA” (rIPCBA) and it serves as a measure of core

inflation. Compared to the headline version, it excludes products with strong seasonal patterns and regulated

prices (e.g. public utility services) and represents 78.15% of the headline index. rIPCBA is available since July

2012 and is released monthly, with approximately a two-week publication lag.

These two indexes, as well as other provincial private and public price indexes, are closely monitored by the

monetary authorities, as well as the general public, particularly the recently released National Price Consumer

Index by INDEC. As the name implies, this is the only index with full national coverage. However, this index

consists of less than two years of data points and this limits the possibility of drawing any relevant inferences.

Inflation in Argentina in recent years has been high, unstable and volatile, particularly from 2012 to most of 2016

when Argentina experienced high monetization of fiscal deficits, strict capital controls and two major devaluations

of the currency.7 The average monthly inflation rate has been fluctuating around 2.2% for rIPCBA and 2.1% for

the monthly aggregated SSPS series, with coefficients of variation at 35% and 49% respectively. This should

pose a significant challenge for economists to formulate accurate forecasts. Figure (1) illustrates the comparison

between these two indexes and provides a quick glimpse at the potential predictive power of the high frequency

index. Overall and for the scope of this work, rIPCBA is available from July 2012 to December 2017 (66 data

points) while SSPS ranges from November 1, 2007 to December 31, 2017 (3714 data points).
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Figure 1: Comparison between rIPCBA inflation and SPSS inflation aggregated to monthly frequency

7The last one coinciding with the lifting of the majority of the capital controls in December 2015 and a subsequent
transition to a flexible exchange rate regime and inflation targeting.
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4.2 Forecasting Exercise

The MIDAS specifications tested were the MIDAS-DL, the unrestricted autoregressive MIDAS-DL (MIDAS-ADL),

and the autoregressive MIDAS-DL with the common factor restriction (MIDAS-ADL-CF). All MIDAS specifications

were evaluated with several high frequency regressors equal to m× LX ,8 with LX ∈ {1,2, 3}, and forecasts were

computed for horizons h ∈ {1,2, 3} over a 36 observation evaluation sample, spanning from January 2015 to

December 2017, and a 18 observation subsample from July 2016 to December 2017 (a period with a more

stable inflation rate), using recursive (expanding) windows. MIDAS-ADL-CF models included quadratic and

cubic variations of the standard Almon polynomial and the exponential version, as well as the Beta probability

density function. MIDAS-ADL models further added flat aggregation (equal weights); and finally, MIDAS-DL

models added the nonparametric (NP) model described in section (3). Forecast combinations of the various

MIDAS models with equal weights were also considered. In addition, all these models were compared to two

benchmarks: i) the low frequency unconditional mean and ii) a low frequency first order autoregression.9

In a first stage, the models were estimated with a balanced dataset. Said otherwise, there is exact frequency

matching: m daily observations from the same month or LX groups of m daily observations from the same

months correspond to a specific low frequency monthly observation of the dependent variable. In total, two sets

of RMSFE were computed, one corresponding to the large sample and the other to a reduced subsample. For all

forecast horizons, d was set to d = −1.

A second stage involved estimating intra-period forecasts for the best selected LX for each forecast horizon based

on the results from the large sample of the first stage and briefly analyzing the stability of the forecasts as more

recent information is incorporated in the models. When intra-period forecasts were computed, d is a fraction in

the interval [−1,0). More specifically, d = −1+ i/m for i in 1, . . . , m, where m is the frequency. Forecasts from

the autoregression and the unconditional mean remained the same throughout the month.

To account for the fact that SSPS is an irregularly spaced series, the frequency was assumed fixed at m= 28, and

so days 29, 30 and 31 of each month are discarded. Daily inflation rates were first computed with the full dataset

and then the observations beyond the 28 of each month were discarded.

Estimation was conducted in R with the midasr package developed by Ghysels et al. (2016) while optimization

was performed with three routines included in optimx10 for nonlinear models or with the lm function from the

stats package for linear ones. Models that require optimx were solved simultaneously with three optimization

routines (ucminf, nlminb and Nelder-Mead) for each model, forecast horizon h, number of high frequency

regressors LX , and out-of-sample period. Only the best solution was kept. The algorithm was initialized taking the

hypothesis of equal weights and a null impact parameter as starting conditions. This strategy delivered reasonable

results empirically and serves as a check on whether the high frequency regressors are actually relevant.

8First order MIDAS-ADL-CF models include m× [LX +min (LX , h)] high frequency regressors since the common factor
restriction increases the number of variates depending on the forecast horizon and the number of high frequency lags.

9A detailed list of the models can be found in Appendix A.
10A comprehensive description about this package can be found in Nash and Varadhan (2011).
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4.3 Empirical Results

Tables (1) and (2) summarize the main results of the first stage. In general, for h= 1 (nowcasts), larger values of

LX produce better results while this tends to reverse when forecasting further into the future, i.e. h= 3. For h= 2,

the results are ambiguous and indicate that LX = 2 or LX = 3 perform best. All three classes of MIDAS models

exhibit similar performance irrespective of the inclusion of the autoregressive term or how it is incorporated. For

all h, most MIDAS models for at least some LX are able to produce a small gain at around 10% when compared

to the autoregression and a larger 25% against the unconditional mean.11 The smaller sample greatly amplifies

these results. Note that for each h, there is a flat aggregation model that performed very well, even better at times

than standard MIDAS models but overall, there is not a single MIDAS model that systematically outperforms the

rest. The forecast combination tested does not seem to improve over any particular MIDAS model.

Figures (2)-(4) condense the main findings of the second stage. Forecasts for h= 1 display a clear trend towards

better accuracy as the high frequency variable reaches a full low frequency period. In day 1 to day 28 point to

point comparison, the RMSFE is reduced by approximately 20% and particularly, in the second half of the month,

the models start to surpass the accuracy of the autoregression by a 15% at most for some days. The improved

performance when evaluated in the subsample suggests that it is even possible to obtain better results as the

inflation rate stabilizes. Similar behavior, although less evident, is observed for forecasts for period h = 3 in the

case of MIDAS-DL models. Forecasts for horizon h= 2 display a rather erratic pattern except the flat aggregation

MIDAS-DL and MIDAS-ADL models.

Figure (5) zooms in on the evolution of all intra-period forecasts for selected models, either h = 1, h = 2 or

h= 3. Despite the intra-period forecasts evidencing some volatility within the month, this does not seem to be a

major concern as inflation stabilizes at the end of the sample. Additionally, note that forecasting further into the

future yields a dynamic closer to the unconditional mean of the whole process. In the future, these results could

be used as a training sample from which to compute inverse mean square error weights and perform forecast

combinations, which could prove to be effective in mitigating intra-period forecast volatility.

Although the results look promising, they should be interpreted with caution. The predictive ability of the models

was tested with the methodology by Giacomini and White (2006).12 Both the unconditional and the conditional

versions of the test were examined. The MIDAS models were evaluated against the two naïve benchmarks,

modeling the difference in forecast accuracy as a constant (unconditional) and also as a first order autoregression

(conditional). The results do not indicate that the difference in forecast accuracy is significant (at 0.05) for most

of MIDAS models. However, since the “large” out-of-sample evaluation set actually constitutes a small sample by

literature standards, the result of the tests cannot be taken as final. As more observations become available, the

tests could be updated with a larger sample to arrive at a more robust conclusion.

11Tables with RMSFE ratios are presented in Appendix B.
12This is similar to the standard test by Diebold and Mariano (1995). The difference lies only in that the estimation sample

size is kept fixed instead of ever expanding, as this allows to better incorporate estimation uncertainty and to compare nested
models.
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Table 1: Out-of-sample predictive performance, RMSFE

h= 1 h= 2 h= 3

LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3

Almon (q = 2)

MIDAS-DL 0.630 0.627 0.564 0.790 0.717 0.712 0.740 0.721 0.751

MIDAS-ADL 0.578 0.589 0.564 0.775 0.729 0.724 0.760 0.741 0.765

MIDAS-ADL-CF 0.592 0.625 0.561 0.785 0.722 0.719 0.748 0.733 0.768

Almon (q = 3)

MIDAS-DL 0.660 0.623 0.571 0.819 0.731 0.720 0.755 0.724 0.757

MIDAS-ADL 0.609 0.609 0.574 0.805 0.745 0.731 0.770 0.739 0.770

MIDAS-ADL-CF 0.617 0.636 0.576 0.827 0.741 0.719 0.762 0.734 0.777

Exp. Almon (q = 2)

MIDAS-DL 0.705 0.646 0.566 0.816 0.755 0.749 0.803 0.863 0.837

MIDAS-ADL 0.627 0.633 0.632 0.775 0.768 0.766 0.839 0.840 0.835

MIDAS-ADL-CF 0.639 0.629 0.557 0.765 0.745 0.885 0.875 0.831 0.860

Exp. Almon (q = 3)

MIDAS-DL 0.731 0.648 0.661 0.834 0.826 0.742 0.809 0.785 0.778

MIDAS-ADL 0.628 0.633 0.645 0.822 0.834 0.814 0.827 0.792 0.807

MIDAS-ADL-CF 0.663 0.661 0.563 0.812 0.863 0.866 0.824 0.800 0.824

Beta

MIDAS-DL 0.668 0.624 0.574 0.768 0.694 0.701 0.747 0.730 0.746

MIDAS-ADL 0.571 0.622 0.568 0.728 0.707 0.716 0.732 0.750 0.748

MIDAS-ADL-CF 0.614 0.619 0.558 0.739 0.697 0.704 0.740 0.736 0.737

Flat

MIDAS-DL 1.158 0.617 0.568 0.745 0.673 0.690 0.713 0.736 0.745

MIDAS-ADL 0.944 0.592 0.568 0.733 0.694 0.746 0.729 0.766 0.777

Nonparametric

MIDAS-DL 0.623 0.629 0.567 0.782 0.717 0.717 0.718 0.721 0.755

EW Forecast Combination

MIDAS-DL 0.657 0.621 0.569 0.780 0.719 0.710 0.738 0.741 0.750

MIDAS-ADL 0.585 0.595 0.570 0.765 0.729 0.728 0.763 0.760 0.764

MIDAS-ADL-CF 0.609 0.627 0.563 0.768 0.734 0.754 0.770 0.756 0.770

Autoregression

p = 1 0.619 0.619 0.619 0.757 0.757 0.757 0.795 0.795 0.795

Unconditional Mean

ȳ 0.790 0.790 0.790 0.800 0.800 0.800 0.806 0.806 0.806

Notes: The evaluation sample comprises 36 data points, from January 2015 to December 2017. Characters in
bold indicate the best number of variables, LX , for each model and forecast horizon, h. Characters in italics
indicate the best model for each number of variables, LX , and forecast horizon, h.
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Table 2: Out-of-sample predictive performance, RMSFE

h= 1 h= 2 h= 3

LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3

Almon (q = 2)

MIDAS-DL 0.555 0.521 0.427 0.646 0.541 0.538 0.568 0.548 0.547

MIDAS-ADL 0.460 0.482 0.430 0.608 0.547 0.544 0.579 0.562 0.569

MIDAS-ADL-CF 0.508 0.528 0.422 0.625 0.548 0.543 0.586 0.574 0.573

Almon (q = 3)

MIDAS-DL 0.564 0.560 0.430 0.683 0.572 0.546 0.580 0.547 0.559

MIDAS-ADL 0.465 0.523 0.435 0.642 0.581 0.551 0.578 0.561 0.584

MIDAS-ADL-CF 0.533 0.569 0.433 0.663 0.581 0.549 0.596 0.581 0.601

Exp. Almon (q = 2)

MIDAS-DL 0.568 0.523 0.432 0.656 0.540 0.539 0.574 0.561 0.561

MIDAS-ADL 0.470 0.453 0.453 0.600 0.538 0.535 0.568 0.572 0.578

MIDAS-ADL-CF 0.581 0.531 0.425 0.620 0.533 0.821 0.669 0.585 0.575

Exp. Almon (q = 3)

MIDAS-DL 0.620 0.549 0.430 0.566 0.551 0.533 0.555 0.559 0.559

MIDAS-ADL 0.469 0.460 0.456 0.640 0.651 0.540 0.565 0.561 0.565

MIDAS-ADL-CF 0.613 0.545 0.424 0.720 0.657 0.634 0.573 0.579 0.579

Beta

MIDAS-DL 0.598 0.491 0.444 0.592 0.506 0.523 0.587 0.570 0.583

MIDAS-ADL 0.489 0.437 0.441 0.550 0.513 0.529 0.578 0.585 0.569

MIDAS-ADL-CF 0.548 0.492 0.432 0.568 0.511 0.525 0.580 0.570 0.571

Flat

MIDAS-DL 0.542 0.515 0.417 0.610 0.501 0.526 0.539 0.577 0.594

MIDAS-ADL 0.540 0.479 0.405 0.577 0.515 0.547 0.544 0.580 0.604

Nonparametric

MIDAS-DL 0.551 0.539 0.432 0.633 0.543 0.540 0.554 0.548 0.557

EW Forecast Combination

MIDAS-DL 0.488 0.522 0.429 0.621 0.533 0.533 0.562 0.555 0.561

MIDAS-ADL 0.417 0.462 0.426 0.597 0.544 0.534 0.565 0.566 0.573

MIDAS-ADL-CF 0.541 0.527 0.426 0.624 0.551 0.592 0.595 0.573 0.575

Autoregression

p = 1 0.552 0.552 0.552 0.675 0.675 0.675 0.692 0.692 0.692

Unconditional Mean

ȳ 0.697 0.697 0.697 0.691 0.691 0.691 0.685 0.685 0.685

Notes: The evaluation sample comprises 18 data points, from July 2016 to December 2017. Characters in bold
indicate the best number of variables, LX , for each model and forecast horizon, h. Characters in italics indicate
the best model for each number of variables, LX , and forecast horizon, h.
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Figure 2: Evolution of the RMSFE for horizon h= 1 within a month for selected models with LX = 3
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Figure 3: Evolution of the RMSFE for horizon h= 2 within a month for selected models with LX = 3
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Figure 4: Evolution of the RMSFE for horizon h= 3 within a month for selected models with LX = 2
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Figure 5: Evolution of intra-period forecasts for selected models and forecast horizons
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5 Conclusion

For some particular MIDAS specifications, there is a slight improvement compared to the low frequency bench-

mark autoregression and the unconditional mean. In principle, this would imply that high frequency online

price indices have a good potential to forecast future behavior of consumer inflation for immediate horizons in

Argentina, but these results are still not robust. This could serve as a useful complementary tool to assess the

out-of-sample performance of perhaps more sophisticated models. Future research could focus on building an

alternative variable such as a daily financial factor as suggested by Monteforte and Moretti (2013) or comparing

against measures of market expectations in order to further validate the findings of this paper.
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Appendix A: MIDAS Specifications

The full set of specifications of the models is detailed below. All models were estimated with LX ∈ {1,2, 3}, h ∈

{1,2, 3} and d as explained in subsection (4.2). The subscript (d, h) on parameter estimates denoting dependence

on d and h has been suppressed for simplicity.

MIDAS-DL:
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MIDAS-ADL-CF:
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Appendix B: Additional Tables

Table B.1: Out-of-sample predictive performance, ratio to RMSFE of autoregression ×100

h= 1 h= 2 h= 3

LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3

Almon (q = 2)

MIDAS-DL 101.8 101.4 91.2 104.2 94.7 93.9 93.1 90.8 94.5

MIDAS-ADL 93.4 95.1 91.1 102.3 96.2 95.6 95.6 93.2 96.2

MIDAS-ADL-CF 95.7 101.0 90.6 103.6 95.3 94.9 94.1 92.2 96.6

Almon (q = 3)

MIDAS-DL 106.6 100.7 92.2 108.1 96.5 95.0 95.0 91.2 95.2

MIDAS-ADL 98.3 98.4 92.7 106.3 98.4 96.5 96.9 93.0 96.9

MIDAS-ADL-CF 99.8 102.7 93.0 109.2 97.8 94.9 95.8 92.3 97.7

Exp. Almon (q = 2)

MIDAS-DL 113.8 104.4 91.5 107.7 99.7 98.8 101.0 108.5 105.3

MIDAS-ADL 101.3 102.2 102.1 102.4 101.4 101.1 105.5 105.7 105.1

MIDAS-ADL-CF 103.2 101.6 90.0 100.9 98.4 116.8 110.1 104.6 108.2

Exp. Almon (q = 3)

MIDAS-DL 118.2 104.7 106.8 110.1 109.1 97.9 101.8 98.8 97.9

MIDAS-ADL 101.4 102.3 104.2 108.5 110.1 107.4 104.0 99.7 101.5

MIDAS-ADL-CF 107.1 106.8 90.9 107.3 114.0 114.4 103.7 100.6 103.7

Beta

MIDAS-DL 108.0 100.8 92.7 101.4 91.6 92.6 94.0 91.8 93.8

MIDAS-ADL 92.3 100.5 91.7 96.1 93.4 94.5 92.1 94.4 94.2

MIDAS-ADL-CF 99.2 100.1 90.2 97.6 92.0 92.9 93.1 92.6 92.7

Flat

MIDAS-DL 187.1 99.8 91.8 98.3 88.8 91.1 89.7 92.6 93.8

MIDAS-ADL 152.6 95.6 91.8 96.7 91.6 98.5 91.7 96.4 97.8

Nonparametric

MIDAS-DL 100.6 101.6 91.7 103.3 94.6 94.6 90.4 90.7 95.0

EW Forecast Combination

MIDAS-DL 106.2 100.4 92.0 102.9 95.0 93.7 92.9 93.3 94.3

MIDAS-ADL 94.5 96.1 92.2 100.9 96.3 96.1 96.0 95.6 96.2

MIDAS-ADL-CF 98.4 101.4 90.9 101.4 96.9 99.5 96.9 95.1 96.9

Unconditional Mean

ȳ 127.7 127.7 127.7 105.6 105.6 105.6 101.4 101.4 101.4

Notes: The evaluation sample comprises 36 data points, from January 2015 to December 2017. Characters in
bold indicate the best number of variables, LX , for each model and forecast horizon, h. Characters in italics
indicate the best model for each number of variables, LX , and forecast horizon, h.
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Table B.2: Out-of-sample predictive performance, ratio to RMSFE of autoregression ×100

h= 1 h= 2 h= 3

LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3

Almon (q = 2)

MIDAS-DL 100.6 94.4 77.4 95.7 80.1 79.6 82.2 79.2 79.0

MIDAS-ADL 83.4 87.4 77.9 90.1 81.0 80.6 83.8 81.2 82.4

MIDAS-ADL-CF 92.0 95.7 76.5 92.6 81.2 80.5 84.8 82.9 82.8

Almon (q = 3)

MIDAS-DL 102.3 101.5 78.0 101.2 84.8 80.8 83.9 79.2 80.8

MIDAS-ADL 84.2 94.7 78.9 95.1 86.0 81.6 83.6 81.1 84.4

MIDAS-ADL-CF 96.6 103.2 78.5 98.3 86.0 81.3 86.1 84.1 86.9

Exp. Almon (q = 2)

MIDAS-DL 103.0 94.8 78.3 97.1 80.0 79.9 83.1 81.2 81.2

MIDAS-ADL 85.3 82.1 82.1 88.9 79.7 79.2 82.1 82.8 83.5

MIDAS-ADL-CF 105.4 96.2 77.1 91.9 79.0 121.6 96.8 84.6 83.2

Exp. Almon (q = 3)

MIDAS-DL 112.4 99.5 77.9 83.8 81.6 79.0 80.3 80.8 80.8

MIDAS-ADL 85.0 83.4 82.7 94.8 96.4 80.0 81.7 81.2 81.7

MIDAS-ADL-CF 111.1 98.8 77.0 106.6 97.3 94.0 82.9 83.7 83.7

Beta

MIDAS-DL 108.5 89.1 80.5 87.7 74.9 77.5 84.9 82.4 84.3

MIDAS-ADL 88.6 79.2 80.0 81.5 75.9 78.4 83.5 84.6 82.3

MIDAS-ADL-CF 99.4 89.3 78.3 84.1 75.7 77.7 83.8 82.4 82.5

Flat

MIDAS-DL 98.3 93.4 75.6 90.3 74.2 77.9 77.9 83.4 85.9

MIDAS-ADL 98.0 86.8 73.4 85.5 76.3 81.0 78.7 83.8 87.3

Nonparametric

MIDAS-DL 100.0 97.8 78.3 93.8 80.4 80.0 80.1 79.2 80.6

EW Forecast Combination

MIDAS-DL 88.4 94.7 77.7 91.9 78.9 78.9 81.2 80.2 81.2

MIDAS-ADL 75.5 83.9 77.3 88.4 80.6 79.1 81.8 81.9 82.8

MIDAS-ADL-CF 98.1 95.5 77.3 92.4 81.6 87.7 86.0 82.9 83.1

Unconditional Mean

ȳ 126.3 126.3 126.3 102.4 102.4 102.4 99.0 99.0 99.0

Notes: The evaluation sample comprises 18 data points, from July 2016 to December 2017. Characters in bold
indicate the best number of variables, LX , for each model and forecast horizon, h. Characters in italics indicate
the best model for each number of variables, LX , and forecast horizon, h.
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Table B.3: Out-of-sample predictive performance, ratio to RMSFE of unconditional mean ×100

h= 1 h= 2 h= 3

LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3

Almon (q = 2)

MIDAS-DL 79.7 79.4 71.4 98.7 89.6 88.9 91.8 89.5 93.2

MIDAS-ADL 73.1 74.5 71.4 96.9 91.1 90.5 94.2 91.9 94.9

MIDAS-ADL-CF 75.0 79.1 71.0 98.1 90.3 89.8 92.8 90.9 95.3

Almon (q = 3)

MIDAS-DL 83.5 78.9 72.2 102.4 91.3 89.9 93.7 89.9 93.9

MIDAS-ADL 77.0 77.1 72.6 100.6 93.2 91.3 95.5 91.7 95.6

MIDAS-ADL-CF 78.1 80.4 72.9 103.4 92.6 89.8 94.5 91.0 96.3

Exp. Almon (q = 2)

MIDAS-DL 89.1 81.7 71.7 101.9 94.4 93.6 99.6 107.0 103.8

MIDAS-ADL 79.4 80.1 79.9 96.9 96.0 95.7 104.0 104.2 103.6

MIDAS-ADL-CF 80.8 79.5 70.5 95.6 93.1 110.6 108.5 103.1 106.7

Exp. Almon (q = 3)

MIDAS-DL 92.5 82.0 83.6 104.3 103.3 92.7 100.3 97.4 96.6

MIDAS-ADL 79.4 80.1 81.6 102.7 104.2 101.7 102.6 98.3 100.1

MIDAS-ADL-CF 83.8 83.7 71.2 101.6 107.9 108.3 102.2 99.2 102.2

Beta

MIDAS-DL 84.5 79.0 72.6 96.0 86.7 87.6 92.6 90.5 92.5

MIDAS-ADL 72.3 78.7 71.8 91.0 88.4 89.4 90.8 93.0 92.8

MIDAS-ADL-CF 77.6 78.4 70.6 92.4 87.1 88.0 91.8 91.3 91.4

Flat

MIDAS-DL 146.5 78.1 71.9 93.1 84.1 86.2 88.4 91.3 92.5

MIDAS-ADL 119.5 74.9 71.9 91.6 86.7 93.3 90.5 95.0 96.4

Nonparametric

MIDAS-DL 78.8 79.6 71.8 97.8 89.6 89.6 89.1 89.4 93.7

EW Forecast Combination

MIDAS-DL 83.2 78.6 72.1 97.5 89.9 88.7 91.6 92.0 93.0

MIDAS-ADL 74.0 75.3 72.2 95.6 91.2 90.9 94.6 94.3 94.8

MIDAS-ADL-CF 77.1 79.4 71.2 96.0 91.7 94.2 95.5 93.7 95.5

Autoregression

p = 1 78.3 78.3 78.3 94.7 94.7 94.7 98.6 98.6 98.6

Notes: The evaluation sample comprises 36 data points, from January 2015 to December 2017. Characters in
bold indicate the best number of variables, LX , for each model and forecast horizon, h. Characters in italics
indicate the best model for each number of variables, LX , and forecast horizon, h.
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Table B.4: Out-of-sample predictive performance, ratio to RMSFE of unconditional mean ×100

h= 1 h= 2 h= 3

LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3 LX = 1 LX = 2 LX = 3

Almon (q = 2)

MIDAS-DL 79.6 74.8 61.3 93.5 78.2 77.7 83.0 80.0 79.8

MIDAS-ADL 66.1 69.2 61.7 88.0 79.1 78.7 84.6 82.0 83.2

MIDAS-ADL-CF 72.9 75.8 60.6 90.4 79.2 78.5 85.6 83.8 83.7

Almon (q = 3)

MIDAS-DL 81.0 80.3 61.8 98.8 82.8 78.9 84.7 79.9 81.6

MIDAS-ADL 66.7 75.0 62.4 92.9 84.0 79.7 84.5 81.9 85.3

MIDAS-ADL-CF 76.5 81.7 62.2 95.9 84.0 79.4 87.0 84.9 87.7

Exp. Almon (q = 2)

MIDAS-DL 81.5 75.0 62.0 94.8 78.1 78.0 83.9 82.0 82.0

MIDAS-ADL 67.5 65.0 65.0 86.8 77.8 77.3 82.9 83.6 84.4

MIDAS-ADL-CF 83.5 76.2 61.0 89.7 77.1 118.7 97.7 85.4 84.0

Exp. Almon (q = 3)

MIDAS-DL 89.0 78.8 61.7 81.8 79.6 77.2 81.1 81.6 81.6

MIDAS-ADL 67.3 66.0 65.5 92.6 94.1 78.1 82.5 82.0 82.5

MIDAS-ADL-CF 87.9 78.2 60.9 104.1 95.0 91.8 83.7 84.5 84.5

Beta

MIDAS-DL 85.9 70.5 63.7 85.6 73.2 75.7 85.7 83.2 85.2

MIDAS-ADL 70.2 62.7 63.3 79.6 74.1 76.5 84.3 85.5 83.1

MIDAS-ADL-CF 78.7 70.7 62.0 82.1 73.9 75.9 84.6 83.2 83.3

Flat

MIDAS-DL 77.8 73.9 59.8 88.2 72.4 76.1 78.7 84.2 86.8

MIDAS-ADL 77.6 68.7 58.1 83.5 74.5 79.1 79.4 84.6 88.2

Nonparametric

MIDAS-DL 79.1 77.4 62.0 91.5 78.5 78.1 80.9 80.0 81.4

EW Forecast Combination

MIDAS-DL 70.0 75.0 61.5 89.7 77.0 77.0 82.0 81.0 82.0

MIDAS-ADL 59.8 66.4 61.2 86.3 78.7 77.2 82.6 82.7 83.6

MIDAS-ADL-CF 77.6 75.6 61.2 90.2 79.7 85.6 86.8 83.7 84.0

Autoregression

p = 1 79.2 79.2 79.2 97.6 97.6 97.6 101.0 101.0 101.0

Notes: The evaluation sample comprises 18 data points, from July 2016 to December 2017. Characters in bold
indicate the best number of variables, LX , for each model and forecast horizon, h. Characters in italics indicate
the best model for each number of variables, LX , and forecast horizon, h.
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