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Abstract 
 
Probability forecasts are gaining popularity in the macroeconomic discipline as point forecasts lack 
the ability to capture the level of uncertainty in fundamental variables like inflation, growth, 
exchange rate, or unemployment. This paper explores the use of probability forecasts to predict 
inflation in Argentina. Scoring rules are used to evaluate several autoregressive models relative to 
a benchmark. Results show that parsimonious univariate models have a relatively similar 
performance to that of the multivariate models around central scenarios but fail to capture tail 
risks, particularly at longer horizons. 
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Pronósticos de inflación en Argentina: 
un enfoque probabilístico 
 
 
 
Tomás Marinozzi 
Universidad del CEMA, Argentina  
 
 
 
Resumen 
 
Los pronósticos probabilísticos están ganando popularidad en la disciplina macroeconómica ya 
que los pronósticos puntuales carecen de la capacidad de capturar el nivel de incertidumbre en 
variables fundamentales como la inflación, el crecimiento, el tipo de cambio o el desempleo. Este 
artículo explora el uso de pronósticos probabilísticos para predecir la inflación en Argentina. Reglas 
de scoring se utilizan para evaluar varios modelos autorregresivos en relación con un benchmark. 
Los resultados muestran que los modelos univariados parsimoniosos tienen un rendimiento 
relativamente similar al de los modelos multivariados en escenarios centrales, pero no capturan 
los riesgos de cola, particularmente en horizontes más largos. 
 
 
Clasificación JEL: C13, C32, C53, E31. 
 
Palabras clave: pronóstico de inflación, puntuaciones de rango de probabilidad continuo, 
pronóstico probabilístico. 
 
Presentado: 28 de noviembre de 2022 – Aprobado: 21 de abril de 2023. 
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1. Introduction 
 
Forecasting has played an increasing role in the economic discipline, as easier access to data and faster 
computers has lowered the cost of making predictions (Agrawal, Gans, & Goldfarb, 2018). For 
macroeconomics in particular, the implementation of forecasting techniques plays a huge role in 
economic policy decisions, as well as in the process of anchoring expectations. Central banks in 
particular use forecasts as a way to predict future behaviour of the economic system and evaluate 
policy implementation. Effective forecasting allows policymakers to make appropriate policy decisions, 
build confidence, align expectations, and induce a forward-looking perspective of the markets. 
 
To this day, most “public” forecasts are presented in the form of baseline scenarios (point forecasts). 
Probability forecasting, on the other hand, attempts to quantify the uncertainty surrounding the 
projection of the target variable. The latter kind of forecasting has been used in other disciplines for 
quite some time, and along with it are techniques that allow the evaluation of probabilistic forecasts. 
Brier (1950), Winkler and Murphy (1968), Savage (1971) are some of the more renowned pioneers in 
the literature of the construction and evaluation of probability forecasting. Although probabilistic 
forecasts were most commonly seen in weather forecasting, over the last three decades the 
popularity and use of probabilistic forecasting has increased in disciplines such as computational 
finance (Duffie & Pan, 1997), and macroeconomic forecasting (Garratt, Lee, Pesaran, & Shin, 2003). 
In finance in particular, the boom of financial risks management has accelerated the standard 
practice of probability forecasts in the field. In macroeconomics, generally speaking, density 
forecasts are not standard practice but are gradually becoming more popular. 
 
The objective of this paper is to explore a range of probabilistic forecasting models that can help 
quantify the uncertainty surrounding inflation in Argentina. A model of such nature could be useful for 
policy makers in planning economic decisions from a probabilistic perspective as well as setting 
contingent policy decisions. It could also improve contracts that use inflation forecasts as an input in 
their decision making, for example, wage negotiations, bank rates and investment-related decisions. 
 
The paper is structured in six main sections. Section 2 discusses the need for probability forecasts 
in a context such as Argentina. Section 3 provides a description of the structure of the models that 
are used in the paper, including a set of different autoregressive models, variance treatments for 
simulations and a technique to combine models. Section 4 discusses the specific variables and 
treatments explicitly used for the ten selected models. Section 5 provides an analytical background 
on the evaluation strategy, describing some alternatives to evaluate probabilistic forecasts using 
scoring rules, as well as point forecast evaluation. Section 6 illustrates the results from the 
forecasting exercises, while section 7 provides concluding remarks. 
 
2. The need for probabilistic forecasts 
 
The fact that the “true” model is unknown implies that any economic forecaster faces uncertainties 
and has to accept some degree of inaccuracy. Modern forecasting techniques, along with faster 
computational power, allow forecasters to run hundreds of scenarios to better comprehend the 
probabilistic nature of the target variable. Surprisingly, despite the computational power to run 
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these models, central banks, the IMF, the World Bank, and other world-renowned institutions tend 
to publicise baseline scenarios (point forecast). In some cases, these institutions may even present 
a simple subset of alternative scenarios (upper/optimistic, lower/pessimistic), which lack 
applicability given that the likelihood of occurrence is usually undisclosed. Sometimes quantile-
based alternative scenarios are presented, but in many cases, they come from ad-hoc distributions 
that were not necessarily tested for predictive accuracy (e.g., assuming a normal-invariant shock 
distribution to be the appropriate distribution when, in fact, this might not be the case). Often 
probabilistic forecasts are illustrated in reports using “fan charts”, however the underlying 
simulations or (sometimes) even the quantiles are not available for the public to download. 
 
It is worth noting that central banks and international organizations often use a probabilistic approach 
to forecasting or stress testing mostly for internal purposes without disclosing the results to the public. 
This paper attempts to illustrate the problem that the usually provided “central” scenarios (mean or 
median, for instance), although they are useful in providing guidance for the future, provide very little 
understanding of the likelihood of such events or the risks associated with extreme events (tail risks). 
 
Let us take inflation in Argentina as an example, which is characterized by high levels of inflation 
and has been particularly volatile over the past fifteen years. Figure 1 compares the year-on-year 
inflation prediction error derived from consumer inflation expectations (expected inflation survey 
from Di Tella University) and a survey of professional forecasters called the Market Expectations 
Survey (REM in Spanish) published by the Argentine Central Bank. 

Figure 1 | 12 months inflation forecast errors 

 
*REM was not published between September 2012 - May 2016. 
Source: UTDT & BCRA. 
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Aside from any positive or negative trend-bias from both indicators, the margin of error is 
substantial: notice the Mean Absolute Error (MAE) for the sample is around 10 percentage points. 
In a case like this, it is evident that a point forecast does not provide enough context for inflationary 
risks and the usefulness for the market is limited. Notice that this likely has more to do with the 
volatility that inflation exhibits, rather than “flaws” in the market’s ability to appropriately forecast 
inflation. Therefore, the point can be made that if inflation exhibits such levels of uncertainty, then 
it should not be ignored but rather embraced and a way to do that is by using probabilistic models. 
 
In order to provide additional information about the inflation outlook, Central Banks often provide 
quantiles derived from market surveys or professional forecaster surveys. For instance, Figure 2 
shows actual inflation (12 months lagged) against the median and quantiles derived from the 
survey conducted by the Central Bank. Although they are sometimes understood as a measure of 
inflation risks, that is not what those quantiles intended to showcase. 

 
In this particular case, notice how in some periods, quantiles are extremely narrow with respect to 
the mean (particularly for the first 24 months of the chart). This is because a distribution of baseline 
projection does not necessarily reflect inflation uncertainty but rather the degree of dispersion in 
expectations. Although it is logical to assume that a more uncertain environment is generally 
associated with a higher degree of dispersion in expectations, this does not properly capture tail-
risk events. To adequately capture risks, probabilistic exercises must be conducted. 
 
 

Figure 2 | 12 months REM inflation forecast errors 
 

 
Note: Inflation was lagged 12 months. Upper/lower bound represent quantile 0.75/0.25. 
Source: BCRA. 
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3. Models structure 
 
In line with the previous section, a probabilistic forecasting exercise was conducted as a way of 
finding models that adequately capture inflation risks in Argentina. The following section describes 
the general structure and characteristics of the class of models tested. Naturally, every model has 
its own advantages and caveats. For instance, one could argue univariate models are unable to 
fully grasp the interactions driving the macroeconomic system. However, it is possible that 
complex multivariate models that include logical interactions among variables yield lower 
predictive performance than parsimonious models, as they might suffer over-specification causing 
overfitting. This paper in particular will focus on a selection of autoregressive models (both 
univariate and multivariate). 
 
3.1. Conditional mean models 
 
3.1.1. Univariate models (benchmark) 
 
A series of conventional univariate models were tested to forecast inflation. Firstly, a random walk: 
 
𝜋! = 𝜋!"# + 𝜇!   (1) 
 
The random walk is perhaps the most commonly used benchmark in macro and finance literature, 
mostly due to its simplicity as well as its reasonable predictive ability. However, we also tested 
other univariate autoregressive specifications to have an alternative baseline.1 
 
𝜋! = 𝜌#𝜋!"#+. . . +𝜌$𝜋!"$ + 𝜇!   (2) 
 
where 𝜇!~𝑁(0, 𝜎).2 
 
3.1.2. Phillips curve 
 
A version of the “Hybrid New Keynesian Phillips Curve” (NKPC), originally proposed by Galí and 
Gertler, was included. The specification of the open economy version is an autoregressive version 
of the one presented in D’Amato, Aguirre, Garegnani, Krysa, and Libonatti (2018). 
 
𝜋! = 𝜙#𝜋!"# + 𝜙%𝐸!"#[𝜋!] + 𝛿𝑥!"# + 𝛾𝜋!"#∗ + 𝜆𝛥𝑒!"# + 𝜇!   (3) 
 
where 𝐸![𝜋!'#]  represents inflation expectations and 𝑥!  is the output gap. In the following 
specifications, exchange rate devaluation, 𝛥𝑒! , and foreign inflation, 𝜋!∗ , have a direct effect on 
domestic inflation (Svensson, 2000). 
 
 

	
1 Because of the non-stationary nature of CPI, we treat the model in log-differences for univariate models and include a 
constant term when required. 
2 Further specifications for the variance will be discuss later in the section. 
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3.1.3. Vector autoregressive (VAR) 
 
Moving on to multivariate models, the vector autoregressive (VAR) model plays a significant role in 
the literature of economic and financial forecasting. They were first introduced by Manz and Sims 
Jr. (1980) as a method for analysing macroeconomic data and they became popular because of 
their simplicity and their use as a flexible alternative to large scale econometric models. 
 
A set of endogenous variables, 𝒀! , is represented as a linear function of its own 𝑝 -lags. This 
assumes that the endogenous variables are treated symmetrically and that there is a feedback 
effect between them. The possibility of exogenous regressors, 𝑿! , that could affect the behaviour 
of the economy was not dismissed. This may be important as we are dealing with a small open 
economy with inflationary dynamics that are dependent on international commodity prices, fund 
flows, and global activity. 
 
The VAR model can be expressed in its reduced form as: 
 
		𝒀! = 𝝂 + 𝑨#𝒀!"#+. . . +𝑨$𝒀!"$ +𝑩#𝑿!"#+. . . +𝑩(𝑿!"( + 𝒖!    (4) 
 
𝒀!  is an 𝑁𝑥1 dimensional vector of endogenous random variables; 𝑿!  is an 𝐿𝑥1 dimensional vector 
of exogenous variables; 𝝂 is a fixed 𝑁𝑥1 vector of constants; 𝑨)  are the 𝑁𝑥𝑁 coefficient matrices 
for the endogenous variables; 𝑩*  are the 𝑁𝑥𝐿  coefficient matrices for the exogenous variables; 
𝒖!~(0, Σ!) is a 𝑁𝑥1 vector of serially uncorrelated exogenous shocks (𝐸[𝒖!𝒖+, ] = 0	∀	𝑠 ≠ 𝑡) with 
constant covariance matrix of size 𝑁𝑥𝑁 and zero mean (𝐸[𝒖!] = 0	∀	𝑡). The previous assumptions 
imply a conditional mean 𝝁!  and a constant covariance 𝚺! = 𝚺-. 
 
It is relevant to mention that it is assumed that exogenous variables follow a separate data generating 
process. This is an important point because for ℎ > 1 , there has to be a predetermined parallel 
forecast for 𝑿!'.  feeding 𝒀!'.. This might be a problem as the predictive ability of the regressor is 
strictly dependent on a parallel forecast. To put it simply, even if the true value of 𝑿 has substantial 
predictive content, if the data generating process (DGP) is too complex to model, poor projections on 
the exogenous variables could actually worsen the predictive ability of the model.3 
 
3.1.4. Vector error correction (VEC) 
 
Vector error correction (VEC) models are restricted versions of VAR models designed with the 
intention of dealing with a non-stationary series that follows a common deterministic trend and are 
known (or presumed) to be co-integrated. In essence, VEC models have co-integration relations 
that are specified so that it restricts the long-run behaviour of the endogenous variables to 
converge to their co-integrating relationships while allowing for short-run adjustment dynamics 
(often referred to as Error Correction Term). 
 

	
3 In this paper exogenous variables like US CPI were modelled separately using tested versions of univariate models. 
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For the VEC models, a Johansen test was conducted to specify the number of co-integrating 
relationships and estimate the relationships. That said, following the Johansen approach is not a 
necessary condition given that models are ultimately judged solely on their predictive ability. 
 
		𝛥𝒀! = 𝝂 +𝜫𝒀!"# + 𝜞#𝜟𝒀!"#+. . . +𝜞($"#)𝜟𝒀!"($"#) + 𝒖!            (5) 
 
where 𝜫 = −O𝑰1 − 𝑨#−. . . −𝑨$Q	can also be written as 𝜫 = 𝜶𝜷, , where 𝜷  is the “cointegration 
matrix” and 𝜶 represents the “loading matrix”; 𝝂 represents the deterministic trend of the dynamic 
process.4 
 
3.1.5. Imposing long-run equilibrium 
 
The notion of long-term equilibrium relationships derived from VEC models is a rather appealing 
concept for macroeconomic forecasting, as it might be a way to exploit theories within the models, 
especially since there is significantly more consensus over long-term equilibrium relationships 
rather than short-term dynamics. This approach has been used before by other authors (Garratt, 
Lee, Hashem Pesaran, & Shin, 2003; Schneider, Chen, & Frohn, 2008). 
 
We tested two models with long-run relationships. The first one includes two exchange rate 
relations, Purchasing Power Parity (PPP) and Uncovered Interest Rate Parity (UIP): 
 
𝑃𝑃𝐼:	𝑃! = 𝐸! − 𝑃!∗ 

                                                                              (6) 
𝑈𝐼𝑃:	𝛥𝐸! = 𝑖! − 𝑖!∗ 

  
Where 𝑃!  is the domestic log-price, 𝑃!∗ is the foreign log-price, 𝐸!  is the exchange rate in logarithms, 
𝑖!  is the domestic interest rate, and 𝑖!∗ is the foreign interest rate.  
 
The second model includes Money Neutrality (MN) and Real Wage Equilibrium (RWE): 
 
𝑀𝑁:	𝑀! − 𝑃! = 𝑘 

                                       (7) 
𝑅𝑊𝐸:	𝑊! − 𝑃! = 𝛿 

 
where 𝑀!  and 𝑊!  represent money supply and nominal wages. 𝑘  and 𝛿  represent constants 
guiding the long-term relationships.5 
 
 
 
 
 

	
4 Read Lütkepohl (2005) on the different ways to model the deterministic trend, as well as the version with exogenous 
regressors. 
5 One could argue the validity of 𝑘 and 𝛿 as constants. In this particular exercise, given the out-of-sample window, the 
models were tested with constant terms, but the technology allows for a dynamic process for those variables. 
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3.2. Conditional volatility and non-parametric innovations 
 
So far, a parametric (in particular a white noise) process has been assumed for the residuals, that 
is, zero mean with constant variance. The paper also explores non-parametric distributions based 
on re-sampling techniques as well as conditional volatility models. 
 
The key behind these types of models is that 𝜎!%	is conditional on past information ℱ!"#. Assume 
𝑧!  as a white noise series with zero mean and constant unit variance, and the conditional variance 
𝜎!% is modeled by: 
 
		𝑢! = 𝜎!𝑧!           (8) 

 
where 𝑧!  is a sequence of independent and identically distributed random variables with mean zero 
and unit variance. 
 
3.2.1. GARCH innovations 
 
Autoregressive conditional heteroskedasticity (ARCH) models describe the current variance as a 
function of the square of the previous periods’ error terms. They were first developed by Engle 
(1982) and then evolved to a generalized version (GARCH) first introduced by Bollerslev (1986). The 
generalized version includes ARCH process with additional lag versions of the variance. Following 
the conventional GARCH specification, the conditional heteroskedasticity is assumed to be: 
 

𝜎!% = 𝛾 +`𝛼)𝑢!")%
2

)3#

+`𝛽*𝜎!"*%
+

*3#

                                                                               (9) 

 
It is assumed that 𝑚 and 𝑠 are non-negative integers, where 𝛾 > 0, 𝛼) ≥ 0, 𝛽* ≥ 0 for all 𝑖 > 0 and 
𝑗 > 0 and ∑ 𝛼)2

)3# +∑ 𝛽* ≤ 1+
*3# . The ARCH component of the model is written as ∑ 𝛽*𝜎!"*%+

*3# . 
 
An issue when modelling conditional variance, in addition to the conditional mean, is that the 
number of parameters escalates and could ultimately cause overfitting, particularly with short 
samples like in our case. To avoid, a significant number of parameters, a GARCH(1,1) specification 
was followed. This logic is partially backed by empirical evidence. (Hansen & Lunde, 2005) compare 
330 different volatility models, in their case using daily exchange rate data, and they conclude that 
there was not significant improvement by using a forecast model different than GARCH(1,1). 
Although the original study focused on equity volatility, this particular specification is common 
practice for forecasters. 
 
It is possible to derive a multivariate extension of the GARCH model (MGARCH), to allow the 
covariance matrix of the dependent variables to follow a flexible dynamic structure conditional on 
past information. However, for this specific analysis, these types of models are not considered, as 
the number of parameters grows exponentially with the number of variables. Because of the nature 
of the frequency of the data and the short sample used, a variation of this model was attempted 
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but quickly discarded as it led to overfitting and extremely poor performance, particularly in the 
early periods of the out-of-sample testing. These type of multivariate GARCH models will not be 
included in the analysis. To preserve covariance structure in multivariate models in addition to a 
GARCH process, bootstrapping is used to ensure that the simulated GARCH errors preserve a joint 
distribution. 
 
3.2.2. Bootstrap innovations 
 
Bootstrapping is another technique used in this paper to introduce shock innovation derived from 
non-parametric distributions. Bootstrapping is achieved by repeatedly sampling (with replacement) 
the model residuals to create simulated shock. The methodology used here is similar to the one 
originally proposed by Efron (1992). 
 
Let 𝑋 = {𝑋#, … , 𝑋4}	be the residuals from a stationary process estimated by the model. Because 
the paper deals with multivariate structures it should be clarified that 𝑋*  is a tuple of multivariate 
residuals such that 𝑋* = l𝑢*#, … , 𝑢*+m  for any 𝑗  in 1 ≤ 𝑗 ≤ 𝑛 , where 𝑠  stands for the number of 
variables in the model. Finally, the exercise consists of a simple random sample drawn with 
replacement from 𝑋 creating an innovations matrix of size 𝑠 × 𝑟 × ℎ where 𝑟 stands for the number 
of simulations and ℎ the number of horizons for the 𝑠 variables. 
 
3.3. Mixture Models 
 
In practice it is common for a forecast combination of “best” performing models to yield an even 
better performance than an individual model (Clemen, 1989). In this case, a combination of 
probabilistic distributions is used, more specifically, a mixture of distributions. In order to represent 
this mathematically, it is assumed that the target variable 𝑦 is generated by a latent variable 𝑧. In 
this context, 𝑧 is considered to be an unobserved variable named the mixture component. Formally, 
𝑝(𝑧) is a multinomial distribution, while 𝑝(𝑦|𝑧) can take a variety of parametric forms. We can 
compute the probability density function over 𝑦 by marginalising out 𝑧 in the following way: 
 

𝑝(𝑦) =`𝑃[𝑍 = 𝑧)]
5

)3#

𝑝(𝑦|𝑧 = 𝑧))                                                                             (10) 

 
It is important to distinguish between a mixture of distributions and a weighted average of the 
distributions. In practice, averaging two equal size distributions corresponds to a component-by-
component weighted average. A mixture on the other hand, draws samples from the predictive 
distributions 𝑖 according to 𝑧)  which occurs with frequency 𝑝(𝑧). An important feature is that a 
mixture of two Gaussian distributions with different means will not generate another Gaussian 
distribution. Figure 3 shows an example of two arbitrary (Gaussian) distributions for the same 
random variable 𝑦 (black and red densities). Notice that averaging both distributions gives an in-
between (Gaussian) distribution, while the mixture generates a non-Gaussian distribution which 
contemplates aspects of both distributions. 
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Why is it important to make this distinction between average and mixture? Imagine if the two 
distributions came from two different forecasters (𝐹#and 𝐹%). They clearly disagree on the most 
likely outcome. While 𝐹# says 𝑦 will take a value closer to zero, 𝐹% says it will be closer to 5. If both 
distributions were averaged, the result would be the in-between distribution (green density) with 
the most likely outcomes at around 2.5. Notice however, even when both forecasters disagree on 
the most likely outcome, they both agree that the chances of variable y turning out to be around 2.5 
are low. That is why from a probabilistic forecasting stance, averaging distributions might not 
necessarily be the best approach as it may assign a high probability to unlikely scenarios. 
 
4. Selected models and variables included 
 
As explained in section 1, thirty different models were tested. However, for illustration purposes, 
only a selection of ten models (and the benchmark) will be displayed. This section describes the 
selected models and the variables included in those models. The data set starts in February 2004 
and ends in December 2019. The variables included in the selected models are: 
 
• CPI: Argentina Consumer Price Index.6 

• Expectations: Twelve months ahead mean inflation expectations. Source: Di Tella University. 

• EMAE: Monthly Economic Activity Indicator. Source: INDEC. 

	
6 The price index was constructed combining the index from the National Institute of Statistics and Census of Argentina 
(INDEC) and the Price Index of the City of Buenos Aires and San Luis prices index. The methodology is identical to the 
one used by the University of CEMA (see https://ucema.edu.ar/cea vce/serie). 

Figure 3 | Arbitrary distributions 
 

 
Source: own calculations. 
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• Interest Rate: 30 to 59 day fixed deposit rates. Source: Central Bank of Argentina (BCRA). 

• Wages: Mean wage of registered private sector workers. Source: Ministry of Labour. 

• Money: A proxy consisted of money base and central bank short-term liabilities. Source: Central 
Bank of Argentina (BCRA). 

• ARS/USD: Bilateral nominal exchange rate. Source: Central Bank of Argentina (BCRA). 

• U.S. CPI: U.S. Consumer Price Index. Source: U.S. Bureau of Economic Analysis (BEA). 

• U.S. Interest Rate: 3-Month treasury bill, market rate. Source: Board of Governors of the Federal 
Reserve System. 

 
Table 1 clarifies which were the selected models, the variables used and the specific variance 
treatment to generate the random shocks behind the simulations. 

 
For obvious reasons, all models use CPI and therefore the variable was excluded from the table.7 
The long-run model in the table includes money neutrality and constant real wages, the alternative 
long-run model (with PPP and UIP) was not included due to its lower performance. The number to 
the left represents the ID number for the models. From now on, referring to the models by the name 
or by their ID number will be indifferent. A couple of mixtures were tested, but the mixture selected 
in the summary was a combination of multivariate models 6, 8, 9. The remaining models and 
variables used are displayed in Table 4 within the appendix. 
 
 
 
 
 
 

	
7 Note that U.S. Interest rate was also excluded from the table because none of the models above use it as part of their 
input. 

Table 1 | Models and variables included 

Model Variance 
Treatment Expectations EMAE ARS/USD Wages Money 

Supply 
Interest 

Rate U.S. CPI 

(0) RW Garch (1,1)        
(1) AR(1) Parametric        
(2) AR(2) Garch (1,1)        
(3) AR(4) Parametric        

(4) VAR(2) Garch (1,1)  X  X  X  
(5) VAR(2) Parametric  X  X  X  
(6) VEC(4) Garch (1,1)   X X X   
(7) VEC(4) Bootstrap   X X X   

(8) PC Bootstrap X X X    X 
(9) Long-Run Bootstrap X X  X X   
(10) Mixture - X X X X X X X 



Forecasting Inflation in Argentina: A Probabilistic Approach | 13 

5. Evaluation strategy 
 
In order to provide a comparison of the models, a recursive out-of-sample evaluation was 
conducted. The parameters were recursively estimated over the out-of-sample stage using all the 
observations available until the time of the forecast (Rossi, 2014). 
 
From a forecasting stance, it is important to acknowledge certain aspects that contribute to a more 
realistic and “fair” comparison between models. The first consideration is the assumption on which 
day or week of the month the forecaster is regularly running the model. This is relevant because in 
practice, forecasters deal with missing values on variables that are lagged or simply have a later 
release date. In this case, it was assumed that the forecaster runs the model at the end of the 
month and special attention was given to match a realistic data set in the recursive process. This 
will be particularly relevant for the activity index and the wage index as they tend to have a lag in 
publication. In order to have a full panel of data, the missing values were imputed using a Kalman 
filter, based on a structural model that was estimated by maximum likelihood. Another important 
consideration is that CPI is a lagged variable versus the exchange rate. In this case, the estimation 
process cuts the data set based on the latest number of CPI, but in order to capture current 
exchange rates dynamics, ad hoc shocks are calibrated in such a way that in ℎ = 1 the endogenous 
model replicates the actual realized value of the exchange rate. 
 
This was the chosen way to deal with miss matches in the data, however, one should acknowledge 
that no out-of-sample testing was done on the imputation method for missing values. On this 
subject, Zanfei, Menapace, Brentan, and Righetti (2022) recognized that different imputation 
methods generate substantial differences in the quality of the predictions. 
 
The last aspect to consider is the revision of the statistical series or the change in methodology. 
Models may be sensitive to series revisions, so in order to have a truly fair comparison, the original 
available series from that time should be the one used. In this specific work, a very clear case is the 
EMAE where the series had a methodological change and experiences constant revisions. Due to 
the difficulty of finding all the previous versions of the EMAE, CPI and salary index series, this point 
is ignored for this work, but it deserves to be clarified as the results are strictly conditional on the 
chosen data set (Check, Nolan, & Schipper, 2018). 
 
After the recursive estimation, different accuracy measures were applied to evaluate the models’ 
predictive ability. For probability forecasts, Continuous Ranked Probability Scores (CRPS) and 
Quantile Scores (QS) were used. Point forecasts were also derived from the distributions and 
compared using Root Mean Square Error (RMSE) and Mean Percentage Errors (MPE) to check 
model bias. Inference on probabilistic ability was computed for selected models using the Diebold-
Mariano (DM) test. Finally, a probability integral transformation (PIT) approach was used to 
evaluate the specification on the top probabilistic model. 
 
 
5.1. Point forecasts evaluation 
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When running an out-of-sample evaluation for a point-forecast, it is necessary to introduce some 
sort of performance measure to compare simulations. Usually, this refers to a loss function that 
maps the forecast deviation from the actual realisation across the out-of-sample window, at 
horizon, ℎ. Therefore, for a specific model 𝑚 and the specified loss function 𝐿, the average score 𝛱 
will be defined as: 
 

𝛱. =
1
𝑇
`𝐿(𝑦w!'. , 𝑦!'.)
6

!3#

                                                                             (11) 

 
where 𝑦w!'.  is the forecast produced ℎ periods prior, and 𝑦!'. is the observed value. The most 
conventional loss function to evaluating point forecast is the Root Mean Square Error (RMSE): 
 

𝑅𝑀𝑆𝐸. = y
1
𝑇
`(𝑦w!'. − 𝑦!'.)%
6

!3#

                                                                             (12) 

 
Mean percentage error (MPE) will also be used to visualise if the models exhibit a bias across the 
horizons: 
 

𝑀𝑃𝐸. =
1
𝑇
`

𝑦w!'. − 𝑦!'.
𝑦w!'.

6

!3#

                                                                             (13) 

 
because actual rather than absolute values of the forecast errors are used in the formula, positive 
and negative forecast errors should be offset in the absence of bias. 
 
5.2. Probabilistic forecasts evaluation 
 
Similarly to the concept of loss functions described in point forecast evaluations, scoring rules are 
generally used as a summary measure for the evaluation of probabilistic predictions or forecasts. 
 
Definition 1 (Scoring rule): Given a forecaster predicted cumulative distribution function, 𝐹 ∈ ℱ, for a 
random variable 𝑌, a scoring rule 𝑆 is a map such that 𝑆 ∶ ℱ × ℝ → ℝ.Specifically, the scoring rule 
assigns a numerical score 𝑆(	𝐹, 𝑦) ∈ ℝ to 𝐹 after evaluating its performance relative to the actual 
observation 𝑦. 
 
Analogous to point forecasts, when using scoring rules a forecaster should try to minimise the 
expected score. Suppose that the agent believes the true distribution is 𝐺, then the expected score 
should be: 
 



Forecasting Inflation in Argentina: A Probabilistic Approach | 15 

min
7
𝐸8 𝑆(𝐹, 𝑦) = min7 `𝑞(𝑦)𝑆(𝐹, 𝑦)	

9

                                                                             (14) 

Where 𝑞 represents a probability. In this context it is important to recognise “fair” scoring rules that 
reward forecasters that seek the true distribution. 
 
Definition 2 (Proper scoring rule): A scoring rule 𝑆 is proper (with respect to class ℱ) if the expected 
loss is minimized at the true 𝐶𝐷𝑆. i.e., if 𝑌~𝐺	then: 
 
 𝔼8𝑆(𝐺, 𝑌) ≤ 𝔼8𝑆(𝐹, 𝑌),			∀	𝐹 ∈ ℱ                                                                               (15) 
 
A scoring rule is strictly proper if its expected value is uniquely minimized by the true probability 
distribution. Improper rules should be avoided as they could encourage the forecaster to present 
predictions that are believed by the forecaster to be incorrect. A detailed review of this topic can be 
found in Gneiting and Raftery (2007) and Bröcker and Smith (2007). 
 
5.2.1. Probability score 
 
The Brier Score (BS), first introduced by Brier (1950), is a type of proper scoring rule that evaluates 
forecast accuracy based on the Euclidean distance between the true likelihood of a binary observation 
(around a threshold) and the predicted probability assigned to the outcome to that observation. Vaguely 
speaking, Brier scores, also known as probability scores, showcase the predictive distribution’s ability 
to capture the true probability of an event’s occurrence. Formally, the evaluation of the predictive 
likelihood of a discrete event 𝑌 ∈ 𝐴 with 𝑝 = 𝑃7[𝑌 ∈ 𝐴] is characterised by: 
 
  𝐵𝑆: = (𝑝 − 𝕀[𝑦 ∈ 𝐴])%	                     (16) 
 
where 𝕀 is a [0,1] binary distribution that assigns probability 0 to events which did not occur and 1 
to those that did. In the context of probabilistic models, the forecast seeks to find the models ability 
of capturing the likelihood of 𝑦 ≤ 𝑧 where 𝑧 is an arbitrary threshold. The mapping is relatively 
straightforward as any density forecast 𝑓 induces a probability forecast for the binary event 𝑌 ≤ 𝑧 
via the value of the associated cumulative distribution function (𝐶𝐷𝐹): 
 

𝐹(𝑧) = � 𝑓(𝑦)𝑑𝑦
;

"<
                                                                             (17)           

 
at the threshold 𝑧. Therefore, the Brier Score can be re-written as: 
 
  𝐵𝑆!,.; (𝐹!'.(𝑧), 𝑦!'.) = (𝑝!'. − 𝕀[𝑦!'. ≤ 𝑧])%                               (18) 
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where 𝑝!'. = 𝑃[𝑌!'. ≤ 𝑧] = 𝐹!'.(𝑧) for all 𝑡 = 0,1,2, … , 𝑇. For unidimensional predictions, the Brier 
score is the probabilistic version of the squared error used for point forecast evaluation.8 
 
5.2.2. Quantile score 
 
If 𝐹 is a monotonically increasing cumulative distribution function, then it is possible to define a 
unique inverse function 𝐹"# , often referred to as a quantile function. Quantile functions allow 
forecasters to assess the performance of the predictive distribution across quantiles (this is 
particularly relevant when assessing the ability of a model to predict tail-risk events). For this 
purpose, the most conventional (strictly proper) scoring rule is the quantile score (QS) (Koenker & 
Bassett Jr, 1978). Formally, the quantile score is defined as:9 
 
  𝑄𝑆!,.> O𝐹!'."# (𝛼), 𝑦!'.Q = 2(𝕀{𝑦!'. < 𝑞} − 𝛼)(𝑞 − 𝑦!'.)                               (19) 
 
Where 𝑞 = 𝐹!'."# (𝛼)	for a quantile 𝛼 ∈ (0,1). 
 
5.2.3. Continuous ranked probability score (CRPS) 
 
The scoring rules analysed so far evaluate a specific portion of the distribution, either a probability 
region or quantile of the distribution. Continuous ranked probability score (CRPS) allows forecasters 
to assess the predictive performance of the distribution as a whole.10 Formally: 
 

𝐶𝑅𝑃𝑆!,.(𝐹!'. , 𝑦!'.) = � (𝐹!'.(𝑥) − 𝕀{𝑦!'. ≤ 𝑥})%𝑑𝑥
<

"<
                  (20) 

 
In the context of 𝐶𝑅𝑃𝑆, 𝕀 is a Heaviside step function that takes the value of 0 for any value below 
the true value and 1 for any value equal or above the true value (Matheson & Winkler, 1976). 
 
One could also split the original integral into two integrals on the critical threshold 𝑦!'. = 𝑥 to 
simplify the Heaviside step function: 
 

𝐶𝑅𝑃𝑆!,.(𝐹!'. , 𝑦!'.) = � 𝐹!'.(𝑥)%𝑑𝑥 +
9!"#

"<
� (𝐹!'.(𝑥) − 1)%𝑑𝑥
<

9!"#
                   (21) 

 
In practice, because 𝐹!'. is an empirical distribution, there are only a finite number of points to evaluate, 
meaning the integrals can be turned into discrete finite sums that are computationally feasible. 
 

	
8 Some other types of scoring rules are the spherical score, logarithmic score, zero-one score. 
9 Also known as the pinball score, and the asymmetric piece-wise linear score. 
10 This is sometimes referred to as the Stochastic euclidean error distance presented by Diebold and Shin (2017). 
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Finally, notice that there is a strong link between the three scoring rules discussed so far. In fact, 
the first two are equivalent to CRPS when aggregated across the distribution. That is: 
 

𝐶𝑅𝑃𝑆!,.(𝐹!'. , 𝑦!'.) = � 𝐵𝑆!,.; (𝐹!'.(𝑧), 𝑦!'.)𝑑𝑧 =
<

"<
� 𝑄𝑆!,.> O𝐹!'."# (𝛼), 𝑦!'.Q𝑑𝛼
#

?
                 (22) 

In the end, the performance of the scoring rule 𝑆 at the horizon ℎ was averaged across the sample 
to obtain an average score of 𝛱. : 
 

𝛱. =
1
𝑇
`𝑆!,.

6

!3#

                 (23) 

 
5.3. Testing for equal predictive performance 
 
Practitioners are often interesting in understanding which of two competing forecasting models 
have better predicting ability. For that purpose, there are some formal statistical tests available, 
often described as “statistical tests of relative forecast comparisons”. 
 
For a given loss function, two competing models (say 𝑖 and 𝑗) may be tested to see if they have 
equal predictive performance using a Diebold-Mariano (DM) test. The formal test of equal forecast 
performance can be based on the statistic: 
 

𝑡. = √𝑇
𝛱.) −𝛱.

*

𝜎w.%
                 (24) 

 
Where: 
 

𝜎w.% =
1
𝑇
`O𝑆!,.) − 𝑆!,.

* Q
%

6

!3#

                 (25) 

 
is an estimate of the variance of the score differential. The DM test does not require any specific 
behaviour for individual scores, it does however, assume that the score differential is covariance 
stationary. 
 
It worth noticing that the statistical test chosen in this paper (the DM Test) is a type of “global 
performance” test that evaluates the forecasting performance of competing models over the entire 
time path. However, there is also a body of literature on “local performance” that suggests the 
relative performance of models may change over time. Tests like the “Fluctuation test” developed 
by Giacomini and Rossi (2010) can be useful in circumventing issues related to model instability, 
which may arise in certain situations. Although this paper does not cover the latter kind of tests, 
further research is encouraged to explore their potential benefits. 
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5.4. PIT scores 
 
The evaluation methods described so far are only useful for relative comparison against a 
benchmark (or other models) as there is no standard measure of an “appropriate” CRPS value. To 
provide a notion of an “absolute” rather than a “relative” evaluation measure of predictive 
performance, forecaster commonly take a calibration analysis based on the use of probability 
integral transform (PIT) (Diebold, Gunther, & Tay, 1997). 
 
A probability integral transform (PIT) is the cumulative probability evaluated at the actual, realised 
value of the target variable. It measures the likelihood of observing a value less than the actual 
realised value, where the probability is measured by the density forecast. According to (Diebold et 
al., 1997), a density forecast is correctly specified if 1) the probability integral transforms of the 
realisations are uniformly distributed over the interval (0,1), 2) for one step-ahead forecasts, the 
PITs also display independence (meaning no auto-correlation).11 The conventional PIT diagnostic 
is not necessarily a statistical test, there are more formal versions for testing models 
misspecification (Rossi & Sekhposyan, 2019). However, they will not be included in this paper. 
 
6. Results 
 
As mentioned in previous sections, thirty different models were tested using a recursive out-of-
sample estimation across twelve horizons. The evaluation starts in January 2012 until December 
2019, splitting the date approximately 50% for in-sample vs out-of-sample estimation. For 
illustration purposes ten models were selected (plus the benchmark) to be include in the charts 
and tables.12 
 
For a target variable like inflation, it is not obvious what transformation of prices index is more 
appropriate for a forecasting evaluation. For instance, it is very common for forecasters to forecast 
year-on-year inflation, but it is also possible that forecasters are more interested in forecasting 
monthly, quarterly, year-end or year-average inflation. Because of this fact, the paper evaluates the 
performance of the price index itself rather than a specific transformation of the data.13 That said, 
as yearly inflation is a very conventional transformation, special attention will be paid to the twelve 
horizon (ℎ = 12) when displaying some fixed horizon charts. 
 
6.1. Out-of-sample testing 
 
In general, metrics including Continuous Ranked Probability Scores (CRPS), Quantile Scores (QS), 
Root Mean Square Errors (RMSE) were displayed in relative terms with respect to the benchmark. 
Readers should note that a lower CRPS is desired, therefore a lower relative performance to the 

	
11 In practice forecasters tend to test calibration on the one-step-ahead forecasts. Although there is literature on multi-
step-ahead forecasts, because forecast errors tend to be serially correlated across horizons, then the PITs also tend to 
be serially correlated, complicating the analysis (Knüppel, 2015). The calibration of multistep-forecast goes beyond the 
scope of this paper, so the PIT analysis will be done on the CPI variations one-step-ahead to reduce trend effects. 
12 CRPS results for the rest of the models can be found in Table 5 within the appendix. 
13 Due to the non-stationary of the CPI, the data was generally transformed to percentage differences or log differences 
during the estimation and forecasting process but was later reverted to CPI for comparison. 
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benchmark actually means predictive gains versus the benchmark (a lower relative CRPS / QS / 
RMSE is desired). Mean Percentage Errors (MPE) was also used, in order to check for bias across 
point forecasts models.14 
 
Figure 4 shows the relative CRPS performance of the models. Notice there is a subset of models 
which, for the given data sample and selected out-of-sample dates, outperform the benchmark 
(lower relative CRPS) across all horizons, in contrast with other models which only outperform the 
benchmark at some horizons. For instance, the selected long-run model, which has two long-run 
relationships, under-performs the benchmark at shorter horizons (1-5 horizons) but it outperforms 
at further horizons. 
 
On the other hand, the selected VAR models tend to outperform in shorter horizons but fail to 
capture longer-term dynamics. In general, outperforming models have between 5% and 15% gains 
when compared to the random walk, while the long-run model has clearly a better performance 
relative to all the other models on a 9-12 horizon (20-25% above the benchmark). 

 
Figure 5 shows QS at horizon 12. It is evident from the chart that the performance was very different 
across quantiles. Notice that in general, models tend to exhibit a rather similar performance at the 
median. 
 

	
14 Note that in this case the performance is not compared relative to the benchmark as it could have been possible that 
the benchmark exhibits a substantial bias, if so, a relative comparison would be erroneous. 

Figure 4 | Relative CRPS by horizon 

 
Source: own calculations. 
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However, there are models that are better than the benchmark at predicting one of the tails. For 
instance, models 3 and 4 have better performance at the left-tail, while others have better 
performance only at the right-tail (high-inflation-risks), like model 2. Some of the models have 
similar performance at the median but out-perform at both tails. 
 
Figure 6 shows the cumulative CRPS differentials. This metric helps to understand evolution of the 
model performance (relative to the benchmark) across the sample. It should be noted that the 
metric cannot be expressed as a percentage given that in early periods the cumulative CRPS scores 
are approximately zero, causing instability in the performance and thus making it impossible to 
interpret. Therefore, the relative performance is showcased as the cumulative differences of the 
CRPS levels with respect to the benchmark. 
 

Figure 5 | QS by quantiles for h = 12 

 
Source: own calculations. 
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Interestingly, most models had a similar performance to the benchmark until 2016-2017, then the 
performance of most models deviated significantly. In general, it can be argued that the benchmark 
failed to capture the accelerating inflation risks from 2016-2019 versus other models with long-run 
relationships like the VEC models or the Long-run model. Lastly, notice that despite the fact that 
the Long-run model outperformed the rest of the models at horizon twelve, the performance of this 
model only improved notoriously over the last 24 months. Although such a model is an option to 
consider, in practice, it is perhaps more appropriate to seek models with consistently better 
performance across the sample as opposed to specific periods in time. In this case, the mixture 
model, despite having a lower final CRPS score than the Long-run model, has a consistently better 
cumulative performance across the whole sample, with the exception of the last periods. This 
result highlights the attractiveness of model combinations as they may have a not only a better but 
also more stable performance than a single model. 
 
A point forecast evaluation was also conducted by taking the median of the probabilistic forecast. 
Figure 7 shows the MPE across horizons. The results indicate that three of the selected models 
(models 3, 4 and 5), presented noticeable bias on their point forecasts at longer horizons. The rest 
of the models exhibited a bias of less than ±1%. 
 

Figure 6 | CCRPS across out-of-sample window for h = 12

 
Source: own calculations. 
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Figure 8 compares the RMSE of the point forecast. Notice that this metric unveils slightly different 
results than the CRPS analysis. For instance, the performance with respect to the benchmark 
worsened significantly for models 3, 4 and 5. This is associated with the fact that the median of these 
models exhibited notorious bias at longer horizons, yet the models displayed some improvements in 
the tails improving the overall CRPS score. With the exception of the long-run model, the relative gains 
of the rest of the models narrowed remarkably in contrast to the results shown by the CRPS. 

Figure 7 | MPE by horizon 

	
Source: own calculations. 

Figure 8 | Relative RMSE by horizon 

 
Source: own calculations. 
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Although this was somewhat expected, as the quantile score showed that models tend to have 
better performance at the tails than at the median the implications remain meaningful.15 One could 
argue that in general the difference in performance between multivariate models with 
parsimonious models, like random walk and AR models, might not be as evident in point forecasts. 
However, there is a much greater opportunity to exploit multivariate models, including models with 
direct links to economic theory, in probability forecast as they might be able to capture other 
embedded dynamics that are not present in regular (base case) scenarios. 
 
6.2. DM test results 
 
A Diebold-Mariano (DM) test was used to formally evaluate the predictive performance of the 
probabilistic models. We specifically chose to test the predictive ability of two models, the mixture 
model and the AR(2) against the Random Walk. The selected univariate model was chosen 
because it was the best univariate model across horizons. The mixture model, on the other hand, 
was not superior at all horizons but was selected among all the multivariate models because it 
yielded the best CRPS score averaged across horizons. Predictive ability was tested for both 
models versus the Random Walk but also against each other. As it was mentioned before, the test 
is only valid in those cases where the CRPS differential is stationary. An Augmented Dickey-Fuller 
(ADF) test was applied on the CRPS differentials across horizons (see Table 2). Horizons that failed 
to reject the unit root hypothesis were discarded for the DM test. 

 
From Table 2, the accepted horizons were marked, and the DM test was enforced using the 
following premise: 

• Null Hypothesis: Model 1 and Model 2 have equal predictive ability. 

• Alternative Hypothesis: Model 1 has a superior predictive ability than Model 2. 
 
Table 3 illustrates the p-values of the DM test between the random walk versus the selected AR 
model and the mixture model. The mixture model failed to reject the null hypothesis at shorter 
horizons (ℎ!, ℎ"), while the AR model failed to reject the hypothesis at longer horizons (ℎ#, ℎ$, ℎ%, ℎ&'). 
When compared to each other, the mixture model outperformed the AR model at (ℎ&', ℎ&&, ℎ&(). The 
results are in line with some of the common premises in the macroeconomic forecasting literature: 
1) random walks or some other types of parsimonious models tend to be as good as multivariate 

	
15 Although this was only check for the twelve horizon, it is not ridicule to assume a similar situation for the other horizons. 

Table 2 | Augmented Dickey-Fuller (ADF) test for stationary (p-values) 

Model 1 - Model 2 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓 𝒉𝟔 𝒉𝟕 𝒉𝟖 𝒉𝟗 𝒉𝟏𝟎 𝒉𝟏𝟏 𝒉𝟏𝟐 

AR(2) - RW 0.01∗ 0.02∗ 0.01∗ 0.03∗ 0.06∗ 0.11 0.08∗ 0.06∗ 0.10∗ 0.90∗ 0.16 0.28 
Mixture - RW 0.21 0.32 0.06∗ 0.08∗ 0.05∗ 0.05∗ 0.90∗ 0.80∗ 0.11 0.07∗ 0.09∗ 0.16 

Mixture - AR(2) 0.01∗ 0.01∗ 0.12 0.32 0.23 0.09∗ 0.09∗ 0.10∗ 0.80∗ 0.05∗ 0.06∗ 0.05∗ 

Horizons that exhibited a p-value ≤ 0.1 were represented by (∗). 
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models in shorter horizons but may under-perform in longer horizons; 2) using multivariate models 
with greater level of sophistication may be more effective at forecasting longer horizons. 

 
6.3. PIT evaluation results 
 
A PIT evaluation was conducted on the one month ahead CPI variation of the mixture model in 
order to assess the calibration of the model. Once again, the mixture model was chosen from all 
the models as it had the best performance averaged across all horizons. Following (Rossi, 2014), 
a histogram and ACF plot of the PITs was taken. Figure 9 does not show any signs of model miss 
specification. PITs do not exhibit auto-correlation suggesting independence and the histogram 
revels a uniform distribution. This is a good sign in fact as it suggests a correct calibration. 

 
If the forecasts lacked calibration, the shape of the PIT histogram would reveal the nature of the 
misspecification. For instance, a U-shaped is a sign of underdispersion as many observations are 
considered to be too extreme when, in fact, they are more common in practice suggesting that the 
predictive density is too narrow. Conversely, over dispersion is reflected in a hump or ∩-shape as 
the distributions are too wide. Bias causes an inclinations or triangular shapes towards an extreme, 
generally a L- or J-shape, depending on the direction of the bias. 
 

Table 3 | Diebold-Mariano test for predictive accuracy (p-values) 

Model 1 - Model 2 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓 𝒉𝟔 𝒉𝟕 𝒉𝟖 𝒉𝟗 𝒉𝟏𝟎 𝒉𝟏𝟏 𝒉𝟏𝟐 

AR(2) - RW 0.01∗ 0.01∗  0.02∗  0.02∗ 0.03∗ - 0.16 0.19 0.17 0.37 - - 

Mixture - RW - - 0.30 0.14 0.07∗  0.03∗  0.02∗  0.02∗ -  0.03∗ 0.01∗ - 

Mixture - AR(2) 0.27 0.30 - - - 0.22 0.16 0.28 0.33  0.09∗   0.4∗ 0.01∗ 

Horizons that exhibited a p-value ≤ 0.1 were represented by (∗). 

Figure 9 | PIT evaluation results for one-step-ahead forecasts 

 
Source: own calculations. 
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7. Conclusion 
 
This paper explores the use of probability forecasts to predict inflation in Argentina using a range 
of autoregressive models. Different metrics were used to assess the performance of the point 
forecast but also the entire distribution across different horizons. A Diebold-Mariano (DM) test was 
applied to selected models to test predictive ability. For the mixture model, a PIT evaluation was 
conducted and the qualitative interpretations suggest the model was correctly calibrated. 
 
The results show that some of the models statistically outperform the benchmark at particular 
horizons, but there is no unique model that outperforms the benchmark at every horizon. In general, 
models with structure (either VEC models or theory-related models linked to wages and money 
growth) have a better performance. 
 
A key point to take from this forecasting exercise is that although some models may be better at 
forecasting central events (mean or median values), they may not be able to appropriately capture 
other moments of the distribution. For instance, the performance between the random walk and 
the mixture model is relatively similar at the median, however, the mixture model is significantly 
better at capturing tail risk events. 
 
Equally weighted mixture models were used as a way of exploring forecast combinations. Because 
of the short nature of the sample, the use of other types of modelling techniques was limited. 
Further research should incorporate dynamic combinations, such as Bayesian model averaging or 
Dynamic model averaging techniques (Koop & Korobilis, 2012). Perhaps, a DMA combination of 
models with different theory-related structures could allow forecasters to extend the sample 
backwards to capture shifts in regimes (such as the hyper-inflationary phase in the 80’s, or the hard 
peg exchange rate policy in the 90’s). On the other hand, the evaluation techniques described in this 
paper may very well be replicated for DSGE models often used by central banks. Lastly, and this is 
an aspect particular to Argentina, given that the CPI is integrated of order two (𝑋	 ∼ 	𝐼(2)), adding 
non-linear components could be an avenue to explore as a way to gain predictive ability. 
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Appendix 

 
  

Table 4 | The rest of the models and variables included 

Model Variance 
Treatment Expectations EMAE ARS/USD Wages Money 

Supply 
Interest 

Rate U.S. CPI U.S. 
interest rate 

(11) AR(1) Garch (1,1)         

(12) AR(2) Parametric         

(13) AR(3) Parametric         

(14) AR(3) Garch (1,1)         

(15) AR(4) Garch (1,1)         

(16) VAR(2) Bootstrap  X  X  X   

(17) VAR(3) Parametric X  X  X X   

(18) VAR(3) Garch (1,1) X  X  X X   

(19) VAR(3) Bootstrap X  X  X X   

(20) VAR(4) Parametric X X  X  X  X 

(21) VAR(4) Garch (1,1) X X  X  X X  

(22) VAR(4) Bootstrap X X  X  X X  

(23) VEC(2) Parametric  X   X    

(24) VEC(2) Garch (1,1)  X   X    

(25) VEC(3) Bootstrap   X  X    

(26) VEC(3) Garch (1,1)   X  X    

(27) VEC(4) Parametric X  X   X X X 

(28) VEC(4) Garch (1,1) X  X   X X X 

(29) PC Parametric X X X    X  
(30) Long-Run 

alt. Bootstrap  X X   X X X 
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Table 5 | CRPS by horizon for the remaining models 

Model 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓 𝒉𝟔 𝒉𝟕 𝒉𝟖 𝒉𝟗 𝒉𝟏𝟎 𝒉𝟏𝟏 𝒉𝟏𝟐 

Random Walk 0.622 1.181 1.745 2.304 2.863 3.399 3.964 4.574 5.193 5.81 6.398 7.30 

Model 11 0.741 1.651 2.451 3.136 3.806 4.603 5.226 6.002 6.729 7.541 8.744 10.094 

Model 12 0.749 1.683 2.494 3.208 3.92 4.781 5.473 6.351 7.233 8.180 9.668 11.415 

Model 13 0.576 1.170 1.828 2.573 3.199 3.766 4.266 4.768 5.289 5.955 6.764 7.660 

Model 14 0.591 1.233 1.910 2.596 3.213 3.861 4.582 5.427 6.345 7.361 8.392 9.432 

Model 15 0.665 1.447 2.282 3.117 3.969 4.772 5.609 6.625 7.702 8.659 9.479 10.159 

Model 16 0.567 1.211 1.871 2.543 3.123 3.803 4.544 5.405 6.382 7.402 8.417 9.412 

Model 17 0.549 1.144 1.803 2.511 3.209 3.917 4.564 5.311 6.108 6.994 7.916 8.724 

Model 18 0.628 1.279 1.941 2.641 3.264 4.016 4.779 5.767 6.878 8.033 9.178 10.237 

Model 19 0.798 1.678 2.371 3.353 4.092 4.975 5.708 6.613 7.66 8.542 9.911 11.395 

Model 20 0.580 1.212 1.877 2.562 3.162 3.737 4.243 4.805 5.427 6.166 6.977 7.843 

Model 21 0.694 1.417 2.153 2.974 3.537 4.185 4.724 5.217 5.991 6.904 8.011 9.256 

Model 22 0.717 1.541 2.398 3.264 4.077 5.003 5.733 6.372 7.367 8.625 10.117 11.832 

Model 23 0.689 1.479 2.291 3.257 3.988 4.711 5.388 6.132 7.106 8.293 9.454 10.702 

Model 24 0.739 1.588 2.374 3.423 4.171 4.959 5.673 6.449 7.366 8.467 9.576 10.646 

Model 25 0.536 1.068 1.660 2.267 2.847 3.452 4.044 4.701 5.427 6.239 7.103 7.909 

Model 26 0.755 1.599 2.34 3.343 4.343 5.252 6.114 7.201 8.398 9.683 11.247 12.979 

Model 27 0.944 1.933 2.557 3.215 3.812 4.338 4.969 5.737 6.122 6.942 8.146 9.307 

Model 28 0.924 1.884 2.594 3.188 3.867 4.531 5.125 5.888 6.657 7.406 8.215 9.184 

Model 29 0.764 1.613 2.350 3.026 3.861 4.608 5.426 6.527 7.576 8.759 9.975 11.316 

Model 30 1.013 2.145 2.835 3.479 3.883 4.122 4.599 5.284 6.037 6.306 6.905 8.052 
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