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Abstract

Probability forecasts are gaining popularity in the macroeconomic discipline as point

forecasts lack the ability to capture the level of uncertainty in fundamental variables like

inflation, growth, exchange rate, or unemployment. This paper explores the use of proba-

bility forecasts to predict inflation in Argentina. Scoring rules are used to evaluate several

autoregressive models relative to a benchmark. Results show that parsimonious univariate

models have a relatively similar performance to that of the multivariate models around

central scenarios but fail to capture tail risks, particularly at longer horizons.
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1 Introduction

Forecasting has played an increasing role in the economic discipline, as easier access to data

and faster computers has lowered the cost of making predictions (Agrawal, Gans, & Goldfarb,

2018). For macroeconomics in particular, the implementation of forecasting techniques plays

a huge role in economic policy decisions, as well as in the process of anchoring expectations.

Central banks in particular use forecasts as a way to predict future behaviour of the economic

system and evaluate policy implementation. Effective forecasting allows policymakers to make

appropriate policy decisions, build confidence, align expectations, and induce a forward-looking

perspective of the markets.

To this day, most “public” forecasts are presented in the form of baseline scenarios (point

forecasts). Probability forecasting, on the other hand, attempts to quantify the uncertainty

surrounding the projection of the target variable. The latter kind of forecasting has been used

in other disciplines for quite some time, and along with it are techniques that allow the eval-

uation of probabilistic forecasts. Brier (1950), Winkler and Murphy (1968), Savage (1971) are

some of the more renowned pioneers in the literature of the construction and evaluation of

probability forecasting. Although probabilistic forecasts were most commonly seen in weather

forecasting, over the last three decades the popularity and use of probabilistic forecasting has

increased in disciplines such as computational finance (Duffie & Pan, 1997), and macroeco-

nomic forecasting (Garratt, Lee, Pesaran, & Shin, 2003). In finance in particular, the boom of

financial risks management has accelerated the standard practice of probability forecasts in the

field. In macroeconomics, generally speaking, density forecasts are not standard practice but

are gradually becoming more popular.

The objective of this paper is to explore a range of probabilistic forecasting models that can

help quantify the uncertainty surrounding inflation in Argentina. A model of such nature could

be useful for policy makers in planning economic decisions from a probabilistic perspective as

well as setting contingent policy decisions. It could also improve contracts that use inflation

forecasts as an input in their decision making, for example, wage negotiations, bank rates and

investment-related decisions.

The paper is structured in six main sections. Section 2 discusses the need for probability
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forecasts in a context such as Argentina. Section 3 provides a description of the structure

of the models that are used in the paper, including a set of different autoregressive models,

variance treatments for simulations and a technique to combine models. Section 4 discusses

the specific variables and treatments explicitly used for the ten selected models. Section 5

provides an analytical background on the evaluation strategy, describing some alternatives to

evaluate probabilistic forecasts using scoring rules, as well as point forecast evaluation. Section

6 illustrates the results from the forecasting exercises, while section 7 provides concluding

remarks.

2 The need for probabilistic forecasts

The fact that the “true” model is unknown implies that any economic forecaster faces uncer-

tainties and has to accept some degree of inaccuracy. Modern forecasting techniques, along

with faster computational power, allows forecasters to run hundreds of scenarios to better com-

prehend the probabilistic nature of the target variable. Surprisingly, despite the computational

power to run these models, central banks, the IMF, the World Bank, and other world-renowned

institutions tend to public baseline scenarios (point forecast). In some cases, some institutions

may even present a simple subset of alternative scenarios (upper/optimistic, lower/pessimistic),

which lack applicability given that the likelihood of occurrence is usually undisclosed. Some-

times quantile-based alternative scenarios are presented, but in many cases, they come from

ad-hock distributions that were not necessarily tested for predictive accuracy (ex. assuming a

normal-invariant shock distribution to be the appropriate distribution when in fact this might

not be the case). Although central scenarios (mean or median for instance) are useful in provid-

ing guidance for the future, they provide very little understanding of the probabilistic likelihood

of such events or the risks associated with extreme events (tail risks). Probabilistic forecasts are

therefore encouraged as a way of embracing uncertainty and providing insightful information

for asset pricing and scenario analysis.

Let us take inflation in Argentina as an example, which is characterized by high levels of inflation

and has been particularly volatile over the past fifteen years. The chart below compares the

year-on-year inflation prediction error derived from consumer inflation expectations (expected

inflation survey from Di Tella University) and a survey of professional forecasters called the

Market Expectations Survey (REM in Spanish) published by the Argentine Central Bank.
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Figure 1: 12M Inflation Forecast Errors. Source: UTDT & BCRA

Aside from any positive or negative trend-bias from both indicators, the margin of error is

substantial: notice the Mean Absolute Error (MAE) for the sample is around 10 percentage

points. In a case like this, it is evident that a point forecast does not provide enough context

for inflationary risks and the usefulness for the market is limited. Notice that this likely has

more to do with the volatility that inflation exhibits, rather than “flaws” in the market’s ability

to appropriately forecast inflation. Therefore, the point can be made that if inflation exhibits

such levels of uncertainty, then it should not be ignored but rather embraced and a way to do

that is by using probabilistic models.

In order to provide additional information about the inflation outlook, /hlCentral Banks often

provide quantiles derived from market surveys or professional forecaster surveys. For instance,

figure (2) shows actual inflation (12M lagged) against the median and quantiles derived from

the survey conducted by the Central Bank. Although they are sometimes understood as a

measure of inflation risks, that is not what those quantiles intended to showcase.
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Figure 2: 12M REM inflation forecast. Source: BCRA

In this particular case, notice how in some periods, quantiles are extremely narrow with respect

to the mean (particularly for the first 24 months of the chart). This is because a distribution

of baseline projection does not necessarily reflect inflation uncertainty but rather the degree of

dispersion in expectations. Although it is logical to assume that a more uncertain environment

is generally associated with a higher degree of dispersion in expectations, this does not properly

capture tail-risk events. To adequately capture risks, probabilistic exercises must be conducted.

3 Models structure

In line with the previous section, a probabilistic forecasting exercise was conducted as a way of

finding models that adequately capture inflation risks in Argentina. The following section de-

scribes the general structure and characteristics of the class of models tested. Naturally, every

model has its own advantages and caveats. For instance, one could argue univariate models are

unable to fully grasp the interactions driving the macroeconomic system. However, it is pos-

sible that complex multivariate models that include logical interactions among variables yield

lower predictive performance than parsimonious models, as they might suffer over-specification
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causing overfitting. This paper in particular will focus on a selection of autoregressive models

(both univariate and multivariate).

3.1 Conditional mean models

3.1.1 Univariate models (benchmark)

A series of conventional univariate models were tested to forecast inflation. Firstly, a random

walk;

πt = πt−1 + ut (1)

The random walk is perhaps the most commonly used benchmark in macro and finance litera-

ture, mostly due to its simplicity as well as its reasonable predictive ability. However, we also

tested other univariate autoregressive specifications to have an alternative baseline.1

πt = ρ1πt−1 + · · ·+ ρpπt−p + ut (2)

where ut ∼ N(0, σ)2.

3.1.2 Phillips curve

A version of the “Hybrid New Keynesian Phillips Curve” (NKPC), originally proposed by Gaĺı

and Gertler, was included. The specification of the open economy version is an autoregressive

version of the one presented in D’Amato, Aguirre, Garegnani, Krysa, and Libonatti (2018).

πt = ϕ1πt−1 + ϕ2Et−1 [πt] + δxt−1 + γπ∗
t−1 + λ∆et−1 + ut (3)

where Et [πt+1] represents inflation expectations and xt is the output gap. In the following

specifications, exchange rate devaluation, ∆et, and foreign inflation, π∗
t , have a direct effect on

domestic inflation (Svensson, 2000).

1Because of the non-stationary nature of CPI, we treat the model in log-differences for univariate models

and include a constant term when required.
2Further specifications for the variance will be discuss later in the section.
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3.1.3 Vector autoregressive (VAR)

Moving on to multivariate models, the vector autoregressive (VAR) model plays a significant

role in the literature of economic and financial forecasting. They were first introduced by Manz

and Sims Jr (1980) as a method for analysing macroeconomic data and they became popular

because of their simplicity and their use as a flexible alternative to large scale econometric

models.

A set of endogenous variables, Y t, is represented as a linear function of its own p-lags. This

assumes that the endogenous variables are treated symmetrically and that there is a feedback

effect between them. The possibility of exogenous regressors, X t, that could affect the be-

haviour of the economy was not dismissed. This may be important as we are dealing with a

small open economy with inflationary dynamics that are dependent on international commodity

prices, fund flows, and global activity.

The VAR model can be expressed in its reduced form as

Y t = ν +A1Y t−1 + . . .+ApYt−p +B1X t−1 + . . .+BqX t−q + ut (4)

Y t is an N ×1 dimensional vector of endogenous random variables; X t is an L×1 dimensional

vector of exogenous variables; ν is a fixed N×1 vector of constants; Ai are the N×N coefficient

matrices for the endogenous variables; Bj are the N×L coefficient matrices for the endogenous

variables; ut ∼ (0,Σt) is a N × 1 vector of serially uncorrelated exogenous shocks (E [utu
′
s] =

0 ∀ s ̸= t) with constant covariance matrix of size N ×N and zero mean (E[ut] = 0 ∀ t). The

previous assumptions imply a conditional mean µt and a constant covariance Σt = Σu

It is relevant to mention that it is assumed that exogenous variables follow a separate data

generating process. This is an important point because for h > 1, there has to be a pre-

determined parallel forecast for X t+h feeding Y t+h. This might be a problem as the predictive

ability of the regressor is strictly dependent on a parallel forecast. To put it simply, even if

the true value of X has substantial predictive content, if the data generating process (DGP) is

too complex to model, poor projections on the exogenous variables could actually worsen the

predictive ability of the model3.

3In this paper exogenous variables like U.S. CPI were modelled separately using tested versions of univariate

models.
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3.1.4 Vector error correction (VEC)

Vector error correction (VEC) models are restricted versions of VAR models designed with the

intention of dealing with a non-stationary series that follows a common deterministic trend

and are known (or presumed) to be co-integrated. In essence, VEC models have co-integration

relations that are specified so that it restricts the long-run behaviour of the endogenous vari-

ables to converge to their co-integrating relationships while allowing for short-run adjustment

dynamics (often referred to as Error Correction Term).

For the VEC models, a Johansen test was conducted to specify the number of co-integrating

relationships and estimate the relationships. That said, following the Johansen approach is not

a necessary condition given that models are ultimately judged solely on their predictive ability.

∆Y t = ν +ΠY t−1 + Γ1∆Y t−1 + ...+ Γ(p−1)∆Y t−(p−1) + ut (5)

where Π = − (IN −A1 − · · · −Ap) can also be written as Π = αβ′, where β is the “cointe-

gration matrix” and α represents the “loading matrix”; ν represents the deterministic trend of

the dynamic process4.

3.1.5 Imposing long-run equilibrium

The notion of long-term equilibrium relationships derived from VEC models is a rather ap-

pealing concept for macroeconomic forecasting, as it might be a way to exploit theories within

the models, especially since there is significantly more consensus over long-term equilibrium

relationships rather than short-term dynamics. This approach has been used before by other

authors (Garratt, Lee, Hashem Pesaran, & Shin, 2003; Schneider, Chen, & Frohn, 2008).

We tested two models with long-run relationships. The first one includes two exchange rate

relations, Purchasing Power Parity (PPP) and Uncovered interest rate Parity (UIP),

PPI : Pt = Et − P ∗
t

UIP : ∆Et = it − i∗t

(6)

Where Pt is the domestic log-price, P ∗
t is the foreign log-price, Et is the exchange rate in

4Read Lütkepohl (2005) on the different ways to model the deterministic trend, as well as the version with

exogenous regressors.
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logarithms, it is the domestic interest rate, and i∗t is the foreign interest rate. The second

model includes Money Neutrality (MN) and Real Wage Equilibrium (RWE).

MN : Mt − Pt = k

RWE : Wt − Pt = δ
(7)

where Mt and Wt represent money supply and nominal wages. k and δ represent constants

guiding the long-term relationships5.

3.2 Conditional volatility and non-parametric innovations

So far, a parametric (in particular a white noise) process has been assumed for the residuals,

that is, zero mean with constant variance. The paper also explores non-parametric distributions

based on re-sampling techniques as well as conditional volatility models.

The key behind these types of models is that σ2
t is conditional on past information Ft−1. Assume

zt as a white noise series with zero mean and constant unit variance, and the conditional variance

σ2
t is modeled by

ut = σtzt

where zt is a sequence of independent and identically distributed random variables with mean

zero and unit variance.

3.2.1 GARCH innovations

Autoregressive conditional heteroskedasticity (ARCH) models describe the current variance as

a function of the square of the previous periods’ error terms. They were first developed by

Engle (1982) and then evolved to a generalized version (GARCH) first introduced by Bollerslev

(1986). The generalized version includes ARCH process with additional lag versions of the

variance. Following the conventional GARCH specification, the conditional heteroskedasticity

is assumed to be;

5One could argue the validity of k and δ as constants. In this particular exercise, given the out-of-sample

window, the models were tested with constant terms but the technology allows for a dynamic process for those

variables.
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σ2
t = γ +

m∑
i=1

αiu
2
t−i +

s∑
j=1

βjσ
2
t−j (8)

It is assumed that m and s are non negative integers, where γ > 0, αi ≥ 0, βj ≥ 0 for all i > 0

and j > 0 and
∑m

i=1 αi +
∑s

j=1 βj ≤ 1. The ARCH component of the model is written as∑s
j=1 βjσ

2
t−j.

An issue when modelling conditional variance, in addition to the conditional mean, is that

the number of parameters escalates and could ultimately cause overfitting, particularly with

short samples like in our case. To avoid, a significant number of parameters, a GARCH(1,1)

specification was followed. This logic is partially backed by empirical evidence. (Hansen &

Lunde, 2005) compare 330 different volatility models, in their case using daily exchange rate

data, and they conclude that there was not significant improvement by using a forecast model

different than GARCH(1,1). Although the original study focused on equity volatility, this

particular specification is common practice for forecasters.

It is possible to derive a multivariate extension of the GARCH model (MGARCH), to allow

the covariance matrix of the dependent variables to follow a flexible dynamic structure condi-

tional on past information. However, for this specific analysis, these types of models are not

considered, as the number of parameters grows exponentially with the number of variables.

Because of the nature of the frequency of the data and the short sample used, a variation of

this model was attempted but quickly discarded as it led to overfitting and extremely poor

performance, particularly in the early periods of the out-of-sample testing. These type of mul-

tivariate GARCH models will not be included in the analysis. To preserve covariance structure

in multivariate models in addition to a GARCH process, bootstrapping is used to ensure that

the simulated GARCH errors preserve a joint distribution.

3.2.2 Bootstrap innovations

Bootstrapping is another technique used in this paper to introduce shock innovation derived

from non-parametric distributions. Bootstrapping is achieved by repeatedly sampling (with

replacement) the model residuals to create simulated shock. The methodology used here is

similar to the one originally proposed by (Efron, 1992) Efron.

Let X = {X1, · · · , Xn} be the residuals from a stationary process estimated by the model.

Because the paper deals with multivariate structures it should be clarified that Xj is a tuple of

multivariate residuals such that Xj =
{
u1
j , · · · , us

j

}
for any j in 1 ≤ j ≤ n, where s stands for
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the number of variables in the model. Finally, the exercise consists of a simple random sample

drawn with replacement from X creating an innovations matrix of size s× r×h where r stands

for the number of simulations and h the number of horizons for the s variables.

3.3 Mixture Models

In practice it is common for a forecast combination of “best” performing models to yield an

even better performance than an individual model (Clemen, 1989). In this case, a combination

of probabilistic distributions is used, more specifically, a mixture of distributions. In order to

represent this mathematically, it is assumed that the target variable y is generated by a latent

variable z. In this context, z is considered to be an unobserved variable named the mixture

component. Formally, p(z) is a multinomial distribution, while p(y|z) can take a variety of

parametric forms. We can compute the probability density function over y by marginalising

out z in the following way

p(y) =
K∑
i=1

P [Z = zi] p(y|z = zi)

It is important to distinguish between a mixture of distributions and a weighted average of the

distributions. In practice, averaging two equal size distributions corresponds to a component

by component weighted average. A mixture on the other hand, draws samples from the pre-

dictive distributions i according to zi which occurs with frequency p(z). An important feature

is that a mixture of two Gaussian distributions with different means will not generate another

Gaussian distribution. Figure (3) shows an example of two arbitrary (Gaussian) distributions

for the same random variable y (black and red densities). Notice that averaging both distribu-

tions gives an in-between (Gaussian) distribution, while the mixture generates a non-Gaussian

distribution which contemplates aspects of both distributions.
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Figure 3: Arbitrary distributions.

Why is it important to make this distinction between average and mixture? Imagine if the

two distributions came from two different forecasters (F1 and F2). They clearly disagree on

the most likely outcome. While F1 says y will take a value closer to zero, F2 says it will be

closer to 5. If both distributions were averaged, the result would be the in-between distribution

(green density) with the most likely outcomes at around 2.5. Notice however, even when both

forecasters disagree on the most likely outcome, they both agree that the chances of variable

y turning out to be around 2.5 are low. That is why from a probabilistic forecasting stance,

averaging distributions might not necessarily be the best approach as it may assign a high

probability to unlikely scenarios.

4 Selected models and variables included

As explained in section 1, thirty different models were tested. However, for illustration purposes,

only a selection of ten models (and the benchmark) will be displayed. This section describes

the selected models and the variables included in those models. The data set starts in February

2004 and ends in December 2019. Variables included in selected models:

• CPI: Argentina Consumer Price Index6.

6The price index was constructed combining the index from the National Institute of Statistics and Census of
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• Expectations: Twelve months ahead mean inflation expectations. Source: Di Tella Uni-

versity.

• EMAE: A Monthly Economic Activity Indicator. Source: INDEC.

• Interest Rate: 30 to 59 day fixed deposit rates. Source: Central Bank of Argentina

(BCRA).

• Wages: Mean wage of registered private sector workers. Source: Ministry of Labour.

• Money: A proxi consisted of money base and central bank short-term liabilities. Source:

Central Bank of Argentina (BCRA).

• ARS/USD: Bilateral nominal exchange rate. Source: Central Bank of Argentina (BCRA).

• U.S. CPI: U.S. Consumer Price Index. Source: U.S. Bureau of Economic Analysis (BEA).

• U.S. Interest Rate: 3-Month treasury bill, market rate. Source: Board of Governors of

the Federal Reserve System.

Table 1 (see below) clarifies which were the selected models, the variables used and the specific

variance treatment to generate the random shocks behind the simulations.

Variance Treatment Expectations EMAE ARS/USD Wages Money Supply Interest Rate U.S. CPI

(0) RW Garch (1,1)

(1) AR(1) Parametric

(2) AR(2) Garch (1,1)

(3) AR(4) Parametric

(4) VAR(2) Garch (1,1) X X X

(5) VAR(2) Parametric X X X

(6) VEC(4) Garch (1,1) X X X

(7) VEC(4) Bootstrap X X X

(8) PC Bootstrap X X X X

(9) Long-Run Bootstrap X X X X

(10) Mixture - X X X X X X X

Table 1: Models and variables included

For obvious reasons, all models use CPI and therefore the variable was excluded from the

Argentina (INDEC) and the Price Index of the City of Buenos Aires and San Luis prices index. The methodology

is identical to the one used by the University of CEMA (see https://ucema.edu.ar/cea vce/serie).

13
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table7. The long-run model in the table includes money neutrality and constant real wages, the

alternative long-run model (with PPP and UIP) was not included due to its lower performance.

The number to the left represents the ID number for the models. From now on, referring to

the models by the name or by their ID number will be indifferent. A couple of mixtures were

tested, but the mixture selected in the summary was a combination of multivariate models 6,

8, 9. The remaining models and variables used are displayed in Table 4 within the appendix.

5 Evaluation strategy

In order to provide a comparison of the models, a recursive out-of-sample evaluation was con-

ducted. The parameters were recursively estimated over the out-of-sample stage using all the

observations available until the time of the forecast (Rossi, 2014).

From a forecasting stance, it is important to acknowledge certain aspects that contribute to a

more realistic and “fair” comparison between models. The first consideration is the assumption

on which day or week of the month the forecaster is regularly running the model. This is

relevant because in practice, forecasters deal with missing values on variables that are lagged or

simply have a later release date. In this case, it was assumed that the forecaster runs the model

at the end of the month and special attention was given to match a realistic data set in the

recursive process. This will be particularly relevant for the activity index and the wage index

as they tend to have a lag in publication. In order to have a full panel of data, the missing

values were imputed using a Kalman filter, based on a structural model that was estimated by

maximum likelihood. Another important consideration is that CPI is a lagged variable versus

the exchange rate. In this case, the estimation process cuts the data set based on the latest

number of CPI, but in order to capture current exchange rates dynamics, ad hoc shocks are

calibrated in such a way that in h = 1 the endogenous model replicates the actual realized

value of the exchange rate.

This was the chosen way to deal with miss matches in the data, however, one should acknowl-

edge that no out-of-sample testing was done on the imputation method for missing values. On

this subject, Zanfei, Menapace, Brentan, and Righetti (2022) recognized that different impu-

tation methods generate substantial differences in the quality of the predictions.

7Note that U.S. Interest rate was also excluded from the table because none of the models above use it as

part of their input.
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The last aspect to consider is the revision of the statistical series or the change in methodology.

Models may be sensitive to series revisions, so in order to have a truly fair comparison, the

original available series from that time should be the one used. In this specific work, a very

clear case is the EMAE where the series had a methodological change and experiences constant

revisions. Due to the difficulty of finding all the previous versions of the EMAE, CPI and salary

index series, this point is ignored for this work, but it deserves to be clarified as the results are

strictly conditional on the chosen data set (Check, Nolan, & Schipper, 2018).

After the recursive estimation, different accuracy measures were applied to evaluate the models’

predictive ability. For probability forecasts, Continuous Ranked Probability Scores (CRPS) and

Quantile Scores (QS) were used. Point forecasts were also derived from the distributions and

compared using Root Mean Square Error (RMSE) and Mean Percentage Errors (MPE) to

check model bias. Inference on probabilistic ability was computed for selected models using

the Diebold-Mariano (DM) test. Finally, a probability integral transformation (PIT) approach

was used to evaluate the specification on the top probabilistic model.

5.1 Point forecasts evaluation

When running an out-of-sample evaluation for a point-forecast, it is necessary to introduce some

sort of performance measure to compare simulations. Usually, this refers to a loss function that

maps the forecast deviation from the actual realisation across the out-of-sample window, at

horizon, h. Therefore, for a specific model m and the specified loss function L, the average

score Π will be defined as

Πh =
1

T

T∑
t=1

L(ŷt+h, yt+h) (9)

where ŷt+h is the forecast produced h periods prior, and yt+h is the observed value. The most

conventional loss function to evaluating point forecast is the Root Mean Square Error (RMSE),

RMSEh =

√√√√ 1

T

T∑
t=1

(ŷt+h − yt+h)
2 (10)

Mean percentage error (MPE) will also be used to visualise if the models exhibit a bias across
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the horizons,

MPEh =
1

T

T∑
t=1

ŷt+h − yt+h

ŷt+h

(11)

because actual rather than absolute values of the forecast errors are used in the formula, positive

and negative forecast errors should be offset in the absence of bias.

5.2 Probabilistic forecasts evaluation

Similarly to the concept of loss functions described in point forecast evaluations, scoring rules

are generally used as a summary measure for the evaluation of probabilistic predictions or

forecasts.

Definition 1. (Scoring rule) Given a forecaster predicted cumulative distribution function,

F ∈ F , for a random variable Y , a scoring rule S is a map such that S : F × R → R.

Specifically, the scoring rule assigns a numerical score S(F, y) ∈ R to F after evaluating its

performance relative to the actual observation y.

Analogous to point forecasts, when using scoring rules a forecaster should try to minimise the

expected score. Suppose that the agent believes the true distribution is G, then the expected

score should be

min
F

EGS(F, y) = min
F

∑
y

q(y)S(F, y)

where q represents a probability. In this context it is important to recognise “fair” scoring rules

that reward forecasters that seek the true distribution.

Definition 2. (Proper scoring rule) A scoring rule S is proper (with respect to class F )

if the expected loss is minimized at the true CDF. i.e. if Y ∼ G then

EGS(G, Y ) ≤ EGS(F, Y ), ∀F ∈ F

A scoring rule is strictly proper if its expected value is uniquely minimized by the true prob-

ability distribution. Improper rules should be avoided as they could encourage the forecaster

to present predictions that are believed by the forecaster to be incorrect. A detailed review of

this topic can be found in Gneiting and Raftery, (2007) and Bröcker and Smith, (2007).
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5.2.1 Probability score

The Brier Score (BS), first introduced by Brier (1950), is a type of proper scoring rule that

evaluates forecast accuracy based on the Euclidean distance between the true likelihood of a

binary observation (around a threshold) and the predicted probability assigned to the outcome

to that observation. Vaguely speaking, Brier scores, also known as probability scores, showcase

the predictive distribution’s ability to capture the true probability of an event’s occurrence.

Formally, the evaluation of the predictive likelihood of a discrete event Y ∈ A with p = PF [Y ∈

A] is characterised by

BSA = (p− I[y ∈ A])2

where I is a [0, 1] binary distribution that assigns probability 0 to events which did not occur

and 1 to those that did. In the context of probabilistic models, the forecast seeks to find the

models ability of capturing the likelihood of y ≤ z where z is an arbitrary threshold. The

mapping is relatively straightforward as any density forecast f induces a probability forecast

for the binary event Y ≤ z via the value of the associated cumulative distribution function

(CDF),

F (z) =

∫ z

−∞
f(y)dy

at the threshold z. Therefore, the Brier Score can be re-written as

BSz
t,h(Ft+h(z), yt+h) = (pt+h − I[yt+h ≤ z])2 (12)

where pt+h = P [Yt+h ≤ z] = Ft+h(z) for all t = 0, 1, 2, . . . , T . For uni-dimensional predic-

tions, the Brier score is the probabilistic version of the squared error used for point forecast

evaluation8.

5.2.2 Quantile score

If F is a monotonically increasing cumulative distribution function, then it is possible to define

a unique inverse function F−1, often referred to as a quantile function. Quantile functions

allow forecasters to asses the performance of the predictive distribution across quantiles (this

is particularly relevant when assessing the ability of a model to predict tail-risk events). For

8Some other types of scoring rules are the spherical score, logarithmic score, zero-one score.
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this purpose, the most conventional (strictly proper) scoring rule is the quantile score (QS)9

(Koenker & Bassett Jr, 1978). Formally, the quantile score is defined as

QSα
t,h(F

−1
t+h(α), yt+h) = 2(I{yt+h < q} − α)(q − yt+h) (13)

where q = F−1
t+h(α) for a quantile α ∈ (0, 1).

5.2.3 Continuous ranked probability score (CRPS)

The scoring rules analysed so far evaluate a specific portion of the distribution, either a prob-

ability region or quantile of the distribution. Continuous ranked probability score (CRPS)10

allows forecasters to assess the predictive performance of the distribution as a whole. Formally,

CRPSt,h(Ft+h, yt+h) =

∫ ∞

−∞
(Ft+h(x)− I{yt+h ≤ x})2 dx (14)

in the context of CRPS, I is a Heaviside step function that takes the value of 0 for any value

below the true value and 1 for any value equal or above the true value (Matheson & Winkler,

1976).

One could also split the original integral into two integrals on the critical threshold yt+h = x

to simplify the Heaviside step function,

CRPSt,h(Ft+h, yt+h) =

∫ yt+h

−∞
Ft+h(x)

2dx+

∫ ∞

yt+h

(Ft+h(x)− 1)2dx

In practice, because Ft+h is an empirical distribution, there are only a finite number of points to

evaluate, meaning the integrals can be turned into discrete finite sums that are computationally

feasible.

Finally, notice that there is a strong link between the three scoring rules discussed so far. In

fact, the first two are equivalent to CRPS when aggregated across the distribution. That is,

9also known as the pinball score, and the asymmetric piece-wise linear score
10This is sometimes referred to as the Stochastic euclidean error distance presented by Diebold and Shin

(2017).

18



CRPSt,h(Ft+h, yt+h) =

∫ ∞

−∞
BSz

t,h(Ft+h(z), yt+h) dz =

∫ 1

0

QSα
t,h(F

−1
t+h(α), yt+h) dα (15)

In the end, the performance of the scoring rule S at the horizon h was averaged across the

sample to obtain an average score of Πh,

Πh =
1

T

T∑
t=1

St,h

5.3 Testing for equal predictive performance

For a given loss function, two competing models (say i and j) may be tested to see if they have

equal predictive performance using a Diebold-Mariano (DM) test. The formal test of equal

forecast performance can be based on the statistic,

th =
√
T

Πi
h − Πj

h

σ̂2
h

(16)

where

σ̂2
h =

1

T

T∑
i=1

(
Si
t,h − Sj

t,h

)2
(17)

is an estimate of the variance of the score differential. The DM test does not require any

specific behaviour for individual scores, it does however, assume that the score differential is

covariance stationary.

5.4 PIT scores

The evaluation methods described so far are only useful for relative comparison against a bench-

mark (or other models) as there is no standard measure of an “appropriate” CRPS value. To

provide a notion of an “absolute” rather than a “relative” evaluation measure of predictive

performance, forecaster commonly take a calibration analysis based on the use of probability

integral transform (PIT) (Diebold, Gunther, & Tay, 1997).

A probability integral transform (PIT) is the cumulative probability evaluated at the actual,

realised value of the target variable. It measures the likelihood of observing a value less than

the actual realised value, where the probability is measured by the density forecast. According
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to (Diebold et al., 1997), a density forecast is correctly specified if 1) the probability integral

transforms of the realisations are uniformly distributed over the interval (0, 1), 2) for one-step-

ahead forecasts11, the PITs also display independence (meaning no auto-correlation).

6 Results

As mentioned in previous sections, thirty different models were tested using a recursive out-of-

sample estimation across twelve horizons. The evaluation starts in January 2012 until December

2019, splitting the date approximately 50% for in-sample vs out-of-sample estimation. For il-

lustration purposes ten models were selected (plus the benchmark) to be include in the charts

and tables12.

For a target variable like inflation, it is not obvious what transformation of prices index is

more appropriate for a forecasting evaluation. For instance, it is very common for forecasters

to forecast year-on-year inflation, but it’s also possible that forecasters are more interested in

forecasting monthly, quarterly, year-end or year-average inflation. Because of this fact, the

paper evaluates the performance of the price index itself rather than a specific transforma-

tion of the data13. That said, as yearly inflation is a very conventional transformation, special

attention will be paid to the twelve horizon (h = 12) when displaying some fixed horizon charts.

6.1 Out-of-sample testing

In general, metrics including Continuous Ranked Probability Scores (CRPS), Quantile Scores

(QS), Root Mean Square Errors (RMSE) were displayed in relative terms with respect to the

benchmark. Readers should note that a lower CRPS is desired, therefore a lower relative per-

formance to the benchmark actually means predictive gains versus the benchmark (a lower

relative CRPS / QS / RMSE is desired). Mean Percentage Errors (MPE) was also used, in

11In practice forecasters tend to test calibration on the one-step-ahead forecasts. Although there is literature

on multi-step-ahead forecasts, because forecast errors tend to be serially correlated across horizons, then the

PITs also tend to be serially correlated, complicating the analysis (Knüppel, 2015). The calibration of multi-

step-forecast goes beyond the scope of this paper, so the PIT analysis will be done on the CPI variations

one-step-ahead to reduce trend effects.
12CRPS results for the rest of the models can be found in Table 5 within the appendix.
13Due to the non-stationary of the CPI, the data was generally transformed to percentage differences or log

differences during the estimation and forecasting process but was later reverted to CPI for comparison.
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order to check for bias across point forecasts models14.

Figure (4) shows the relative CRPS performance of the models. Notice there is a subset of

models which, for the given data sample and selected out-of-sample dates, outperform the

benchmark (lower relative CRPS) across all horizons, in contrast with other models which

only outperform the benchmark at some horizons. For instance, the selected long-run model,

which has two long-run relationships, under-performs the benchmark at shorter horizons (1-5

horizons) but it outperforms at further horizons.
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Figure 4: Relative CRPS by horizon

On the other hand, the selected VAR models tend to outperform in shorter horizons but fail

to capture longer-term dynamics. In general, outperforming models have between 5% and 15%

gains when compared to the random walk, while the long-run model has clearly a better per-

formance relative to all the other models on a 9-12 horizon (20-25% above the benchmark).

Figure (5) shows QS at horizon 12. It is evident from the chart that the performance was

very different across quantiles. Notice that in general, models tend to exhibit a rather similar

14Note that in this case the performance is not compared relative to the benchmark as it could have been

possible that the benchmark exhibit a substantial bias, if so, a relative comparison would be erroneous.
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performance at the median.
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Figure 5: QS by quantiles for h = 12

However, there are models that are better than the benchmark at predicting one of the tail.

For instance, models 3 and 4 have better performance at the left-tail, while others have better

performance only at the right-tail (high-inflation-risks), like model 2. Some of the models have

similar performance at the median but out-perform at both tails.

Figure (6) shows the cumulative CRPS differentials. This metric helps to understand evolution

of the model performance (relative to the benchmark) across the sample. It should be noted

that the metric can not be expressed as a percentage given that in early periods the cumulative

CRPS scores are approximately zero, causing instability in the performance and thus making

it impossible to interpret. Therefore, the relative performance is showcased as the cumulative

differences of the CRPS levels with respect to the benchmark.
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Figure 6: CCRPS across out-of-sample window for h = 12

Interestingly, most models had a similar performance to the benchmark until 2016-2017, then

the performance of most models deviated significantly. In general, it can be argued that the

benchmark failed to capture the accelerating inflation risks from 2016-2019 versus other models

with long-run relationships like the VEC models or the Long-run model. Lastly, notice that

despite the fact that the Long-run model outperformed the rest of the models at horizon twelve,

the performance of this model only improved notoriously over the last 24 months. Although

such a model is an option to consider, in practice, it is perhaps more appropriate to seek models

with consistently better performance across the sample as opposed to specific periods in time.

In this case, the mixture model, despite having a lower final CRPS score than the Long-run

model, has a consistently better cumulative performance across the whole sample, with the

exception of the last periods. This result highlights the attractiveness of model combinations

as they may have a not only a better but also more stable performance than a single model.

A point forecast evaluation was also conducted by taking the median of the probabilistic fore-

cast. Figure (7) shows the MPE across horizons. The results indicate that three of the selected

models (models 3, 4 and 5), presented noticeable bias on their point forecasts at longer horizons.

The rest of the models exhibited a bias of less than ±1%.

23



M
ea

n 
Pe

rc
en

ta
ge

 E
rr

or
 (

%
)

2 4 6 8 10 12

-4
-2

0
2

4
6

8
(0) RW - G

(1) AR(1) - P

(2) AR(2) - G

(3) AR(4) - P

(4) VAR(2) - G

(5) VAR(2) - P

(6) VEC(4) - G

(7) VEC(4) - B

(8) PC - B

(9) LR - B

(10) Mixture

Figure 7: MPE by horizon

Figure (8) compares the RMSE of the point forecast. Notice that this metric unveils slightly

different results than the CRPS analysis. For instance, the performance with respect to the

benchmark worsened significantly for models 3, 4 and 5. This is associated with the fact that

the median of these models exhibited notorious bias at longer horizons, yet the models displayed

some improvements in the tails improving the overall CRPS score. With the exception of the

long-run model, the relative gains of the rest of the models narrowed remarkably in contrast to

the results shown by the CRPS.
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Although this was somewhat expected, as the quantile score showed that models tend to have

better performance at the tails than at the median15 the implications remain meaningful. One

could argue that in general the difference in performance between multivariate models with

parsimonious models, like random walk and AR models, might not be as evident in point fore-

casts. However, there is a much greater opportunity to exploit multivariate models, including

models with direct links to economic theory, in probability forecast as they might be able to

capture other embedded dynamics that are not present in regular (base case) scenarios.

6.2 DM test results

A Diebold-Mariano (DM) test was used to formally evaluate the predictive performance of

the probabilistic models. We specifically chose to test the predictive ability of two models,

the mixture model and the AR(2) against the Random Walk. The selected univariate model

was chosen because it was the best univariate model across horizons. The mixture model, on

the other hand, was not superior at all horizons but was selected among all the multivariate

15Although this was only check for the twelve horizon, it is not ridicule to assume a similar situation for the

other horizons.
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models because it yielded the best CRPS score averaged across horizons. Predictive ability

was tested for both models versus the Random Walk but also against each other. As it was

mentioned before, the test is only valid in those cases where the CRPS differential is stationary.

An Augmented Dickey-Fuller (ADF) test was applied on the CRPS differentials across horizons

(see Table 2). Horizons that failed to reject the unit root hypothesis were discarded for the DM

test.

Model 1 - Model 2 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

AR(2) - RW 0.01∗ 0.02∗ 0.01∗ 0.03∗ 0.06∗ 0.11 0.08∗ 0.06∗ 0.10∗ 0.9∗ 0.16 0.28

Mixture - RW 0.21 0.32 0.06∗ 0.08∗ 0.05∗ 0.05∗ 0.9∗ 0.8∗ 0.11 0.07∗ 0.09∗ 0.16

Mixture - AR(2) 0.01∗ 0.01∗ 0.12 0.32 0.23 0.09∗ 0.09∗ 0.10∗ 0.8∗ 0.05∗ 0.06∗ 0.05∗

Horizons that exhibited a p-value ≤ 0.1 were represented by (∗).

Table 2: Augmented Dickey-Fuller (ADF) test for stationary (p-values)

From Table 2, the accepted horizons were marked and the DM test was enforced using the

following premise.

Null Hypothesis: Model 1 and Model 2 have equal predictive ability.

Alt. Hypothesis: Model 1 has a superior predictive ability than Model 2.

Model 1 - Model 2 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

AR(2) - RW 0.01∗ 0.01∗ 0.02∗ 0.02∗ 0.03∗ - 0.16 0.19 0.17 0.37 - -

Mixture - RW - - 0.30 0.14 0.07∗ 0.03∗ 0.02∗ 0.02∗ - 0.03∗ 0.01∗ -

Mixture - AR(2) 0.27 0.30 - - - 0.22 0.16 0.28 0.33 0.09∗ 0.4∗ 0.01∗

Horizons that exhibited a p-value ≤ 0.1 were represented by (∗).

Table 3: Diebold-Mariano test for predictive accuracy (p-values)

Table 3 illustrates the p-values of the DM test between the random walk versus the selected

AR model and the mixture model. The mixture model failed to reject the null hypothesis at
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shorter horizons (h3, h4), while the AR model failed to reject the hypothesis at longer horizons

(h7, h8, h9, h10). When compared to each other, the mixture model outperformed the AR

model at (h10, h11, h12). The results are in line with some of the common premises in the

macroeconomic forecasting literature; 1) Random walks or some other types of parsimonious

models tend to be as good as multivariate models in shorter horizons but may under-perform

in longer horizons. 2) Using multivariate models with greater level of sophistication may be

more effective at forecasting longer horizons.

6.3 PIT evaluation results

A PIT evaluation was conducted on the one month ahead CPI variation of the mixture model

in order to asses the calibration of the model. Once again, the mixture model was chosen from

all the models as it had the best performance averaged across all horizons. Following (Rossi,

2014), a histogram and ACF plot of the PITs was taken. Figure (9) does not show any signs

of model miss specification. PITs do not exhibit auto-correlation suggesting independence and

the histogram revels a uniform distribution. This is a good sign in fact as it suggest a correct

calibration.
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Figure 9: PIT evaluation results for one-step-ahead forecasts

If the forecasts lacked calibration, the shape of the PIT histogram would reveal the nature of the

misspecification. For instance, a
⋃
-shaped is a sign of underdispersion as many observations

are considered to be too extreme when in fact they are more common in practice suggesting

that the predictive density is too narrow. Conversely, over dispersion is reflected in a hump

or
⋂
-shape as the distributions are too wide. Bias causes a inclinations or triangular shapes

towards an extreme, generally a “L” or “J” shape, depending on the direction of the bias.
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7 Conclusion

This paper explores the use of probability forecasts to predict inflation in Argentina using a

range of autoregressive models. Different metrics were used to asses the performance of the

point forecast but also the entire distribution across different horizons. A Diebold-Mariano

(DM) test was applied to selected models to test predictive ability. For the mixture model, a

PIT evaluation was conducted and the qualitative interpretations suggest the model was cor-

rectly calibrated.

The results show that some of the models statistically outperform the benchmark at particular

horizons, but there is no unique model that outperforms the benchmark at every horizon. In

general, models with structure (either VEC models or theory-related models linked to wages

and money growth) have a better performance.

A key point to take from this forecasting exercise is that although some models may be better

at forecasting central events (mean or median values), they may not be able to appropriately

capture other moments of the distribution. For instance, the performance between the random

walk and the mixture model is relatively similar at the median, however, the mixture model is

significantly better at capturing tail risk events.

Equally weighted mixture models were used as a way of exploring forecast combinations. Be-

cause of the short nature of the sample, the use of other types of modelling techniques was

limited. Further research should incorporate dynamic combinations, such as Bayesian model

averaging or Dynamic model averaging techniques (Koop & Korobilis, 2012). Perhaps, a DMA

combination of models with different theory-related structures could allow forecasters to extend

the sample backwards to capture shifts in regimes (such as the hyper-inflationary phase in the

80’s, or the hard peg exchange rate policy in the 90’s). On the other hand, the evaluation

techniques described in this paper may very well be replicated for DSGE models often used

by central banks. Lastly, and this is an aspect particular to Argentina, given that the CPI

is integrated of order two (X ∼ I(2)), adding non-linear components could be an avenue to

explore as a way to gain predictive ability.
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8 Appendix

Var. Treatment Exp. EMAE Ex. rate Wage MS Int. rate U.S. CPI U.S. Int. rate

(11) AR(1) Garch (1,1)

(12) AR(2) Parametric

(13) AR(3) Parametric

(14) AR(3) Garch (1,1)

(15) AR(4) Garch (1,1)

(16) VAR(2) Bootstrap X X X

(17) VAR(3) Parametric X X X X

(18) VAR(3) Garch (1,1) X X X X

(19) VAR(3) Bootstrap X X X X

(20) VAR(4) Parametric X X X X X

(21) VAR(4) Garch (1,1) X X X X X

(22) VAR(4) Bootstrap X X X X X

(23) VEC(2) Parametric X X

(24) VEC(2) Garch (1,1) X X

(25) VEC(3) Bootstrap X X

(26) VEC(3) Garch (1,1) X X

(27) VEC(4) Parametric X X X X X

(28) VEC(4) Garch (1,1) X X X X X

(29) PC Parametric X X X X

(30) Long-Run Alt Bootstrap X X X X X

Table 4: The rest of the models and variables included
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Model h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

Random Walk 0.622 1.181 1.745 2.304 2.863 3.399 3.964 4.574 5.193 5.81 6.398 7.30

Model 11 0.741 1.651 2.451 3.136 3.806 4.603 5.226 6.002 6.729 7.541 8.744 10.094

Model 12 0.749 1.683 2.494 3.208 3.92 4.781 5.473 6.351 7.233 8.18 9.668 11.415

Model 13 0.576 1.17 1.828 2.573 3.199 3.766 4.266 4.768 5.289 5.955 6.764 7.66

Model 14 0.591 1.233 1.91 2.596 3.213 3.861 4.582 5.427 6.345 7.361 8.392 9.432

Model 15 0.665 1.447 2.282 3.117 3.969 4.772 5.609 6.625 7.702 8.659 9.479 10.159

Model 16 0.567 1.211 1.871 2.543 3.123 3.803 4.544 5.405 6.382 7.402 8.417 9.412

Model 17 0.549 1.144 1.803 2.511 3.209 3.917 4.564 5.311 6.108 6.994 7.916 8.724

Model 18 0.628 1.279 1.941 2.641 3.264 4.016 4.779 5.767 6.878 8.033 9.178 10.237

Model 19 0.798 1.678 2.371 3.353 4.092 4.975 5.708 6.613 7.66 8.542 9.911 11.395

Model 20 0.580 1.212 1.877 2.562 3.162 3.737 4.243 4.805 5.427 6.166 6.977 7.843

Model 21 0.694 1.417 2.153 2.974 3.537 4.185 4.724 5.217 5.991 6.904 8.011 9.256

Model 22 0.717 1.541 2.398 3.264 4.077 5.003 5.733 6.372 7.367 8.625 10.117 11.832

Model 23 0.689 1.479 2.291 3.257 3.988 4.711 5.388 6.132 7.106 8.293 9.454 10.702

Model 24 0.739 1.588 2.374 3.423 4.171 4.959 5.673 6.449 7.366 8.467 9.576 10.646

Model 25 0.536 1.068 1.66 2.267 2.847 3.452 4.044 4.701 5.427 6.239 7.103 7.909

Model 26 0.755 1.599 2.34 3.343 4.343 5.252 6.114 7.201 8.398 9.683 11.247 12.979

Model 27 0.944 1.933 2.557 3.215 3.812 4.338 4.969 5.737 6.122 6.942 8.146 9.307

Model 28 0.924 1.884 2.594 3.188 3.867 4.531 5.125 5.888 6.657 7.406 8.215 9.184

Model 29 0.764 1.613 2.35 3.026 3.861 4.608 5.426 6.527 7.576 8.759 9.975 11.316

Model 30 1.013 2.145 2.835 3.479 3.883 4.122 4.599 5.284 6.037 6.306 6.905 8.052

Table 5: CRPS by horizon for the remaining models
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